Search Results

You are looking at 1 - 10 of 31 items for

  • Author or Editor: M.-Y. Liu x
  • Refine by Access: All Content x
Clear All Modify Search

The essential oil extracted from Nardostachys chinensis Batal (NCB) was analyzed by gas chromatography-mass spectrometry (GC-MS) combined with two chemometric resolution methods (CRM), heuristic evolving latent projections (HELP), and selective ion analysis (SIA). Qualitative analysis was performed by comparing the obtained pure mass spectra with those in National Institute of Standards and Technology (NIST) mass spectra database. Identification of some compounds was assisted by comparison of programmed temperature retention indices (PTRIs). The quantitative results were obtained by overall volume integration (OVI). A total of 69 compounds in the essential oil of N. chinensis Batal were identified, accounting for 93.98% of the total content. The major compounds were (−)-spathulenol, epiglobulol, trans-longipinocarveol, and patchouli alcohol which contribute to the antimicrobial and antioxidant activity. The results showed that the efficiency and reliability were greatly improved by use of chemometric techniques and programmed temperature retention index as assistants of GC-MS in identification of the plant essential oil.

Open access

Abstract  

Many concerns over unsafe or unknown properties of multi-walled carbon nanotubes (MWNTs) have been raised. The thermal characteristics regarding stability would represent potential hazards during the production or utilization stage and could be determined by calorimetric tests for various thermokinetic parameters. Differential scanning calorimetry (DSC) was employed to evaluate the thermokinetic parameters for MWNTs at various compositions. Thermoanalytical curves showed that the average heat of decomposition (ΔH d) of the MWNTs samples in a manufacturing process was about 31,723 J g−1, by identifying them as an inherently hazardous material. In this study, significant thermal analysis appeared in the presence of sulfuric acid (H2SO4). From the DSC experiments, the purification process of MWNTs could induce an unexpected reaction in the condition of batch addition with reactants of H2SO4. The results can be applied for designing emergency relief system and emergency rescue strategies during a perturbed situation or accident.

Restricted access

Abstract

Objective

The present report evaluates the protective effects of luteolin against diabetic retinopathy (DR).

Materials and methods

Diabetes was induced in rats by i.p. administration of 60 mg/kg of streptozotocin (STZ), followed by treatment with luteolin for 4 weeks. The effects of luteolin were determined based on the blood glucose and cytokine levels, and parameters of oxidative stress in retinal tissue of DR rats. The diameter of retinal vessels was estimated by fundus photography. A Western blot assay was used to determine the expression of apoptotic proteins and Nod-like receptor 3 (NLRP3) pathway proteins in the retina of DR rats. A molecular docking study was performed to evaluate the interaction between luteolin and NLRP3.

Results

The level of blood glucose was reduced in the luteolin-treated group compared with the DR group. Reductions in cytokines and oxidative stress were observed in the retinal tissues of the luteolin-treated group relative to the DR group. Moreover, treatment with luteolin reduced the expression of NLRP1, NOX4, TXNIP, and NLRP3 proteins, and ameliorated the altered expression of apoptotic proteins in the retina of DR rats.

Conclusion

In conclusion, luteolin prevents retinal apoptosis in DR rats by regulating the NLRP/NOX4 signalling pathway.

Restricted access

Patrinia scabra Bunge has long been used in clinic as a traditional Chinese medicine for treating leukemia and cancer and regulating host immune response. Despite their wide use in China, no report on system analysis on their chemical constituents is available so far. The current study was designed to profile the fingerprint of ethyl acetate extract of it, and in addition, to characterize the major fingerprint peaks and determine their quantity. Therefore, a detailed gradient high-performance liquid chromatography was described to separate more than 30 compounds with satisfactory resolution in P. scabra Bunge. Based on the chromatograms of 10 batches samples, a typical high-performance liquid chromatographic (HPLC) fingerprint was established with 23 chromatographic peaks being assigned as common fingerprint peaks. Furthermore, a quadrupole time of flight mass spectrometry (Q-TOF/MS) was coupled for the characterization of major compound. As (+)-nortrachelogenin was the most predominant compound in P. scabra Bunge, the quantification on it was also carried out with the method being validated. As a result, (+)-nortrachelogenin was found to be from 1.33 to 2.21 mg g−1 in this plant material. This rapid and effective analytical method could be employed for quality assessment of P. scabra Bunge, as well as pharmaceutical products containing this herbal material.

Open access

Abstract  

A microcalorimetric technique based on the bacterial heat-output was explored to evaluate the effect of Mn(II) on Bacillus thuringiensis. The power-time curves of the growth metabolism of B. thuringiensis and the effect of Mn(II) on it were studied using an LKB-2277 BioActivity Monitor, ampoules method, at 28C. For evaluation of the results, the maximum peak-heat output power (P max) in the growth phase, the growth rate constants (k), the log phase heat effects (Q log ), and the total heat effect in 23 h (Q T) for B. thuringiensis were determined. Manganese has been regarded as the essential biological trace element. Mn(II) of different concentration have different effects on B. thuringiensis growth metabolism. High concentration (800-1600 μg mL-1) of Mn(II) can promote the growth of B. thuringiensis; low concentration (500-800 μg mL-1) can inhabit its growth.

Restricted access

Nitrogen (N) is an important nutrient for plant growth and yield production, and rice grown in paddy soil mainly uses ammonium (NH4 +) as its N source. Previous studies have shown that N status is tightly connected to plant defense; however, the roles of NH4 + uptake and assimilation in rice sheath blight disease response have not been studied previously. Here, we analyzed the effects of different N sources on plant defense against Rhizoctonia solani. The results indicated that rice plants grown in N-free conditions had higher resistance to sheath blight than those grown under N conditions. In greater detail, rice plants cultured with glutamine as the sole N source were more susceptible to sheath blight disease compared to the groups using NH4 + and nitrate (NO3 ) as sole N sources. N deficiency severely inhibited plant growth; therefore, ammonium transporter 1;2 overexpressors (AMT1;2 OXs) were generated to test their growth and defense ability under low N conditions. AMT1;2 OXs increased N use efficiency and exhibited less susceptible symptoms to R. solani and highly induced the expression of PBZ1 compared to the wild-type controls upon infection of R. solani. Furthermore, the glutamine synthetase 1;1 (GS1;1) mutant (gs1;1) was more susceptible to R. solani infection than the wild-type control, and the genetic combination of AMT1;2 OX and gs1;1 revealed that AMT1;2 OX was less susceptible to R. solani and required GS1;1 activity. In addition, cellular NH4 + content was higher in AMT1;2 OX and gs1;1 plants, indicating that NH4 + was not directly controlling plant defense. In conclusion, the present study showed that the activation of NH4 + uptake and assimilation were required for rice resistance against sheath blight disease.

Restricted access

Abstract

Although the use of aspirin has substantially reduced the risks of cardiovascular events and death, its potential mechanisms have not been fully elucidated. In a previous study, we found that aspirin triggers cellular autophagy. In the present study, we aimed to determine the protective effects of aspirin on human coronary artery endothelial cells (HCAECs) and explore its underlying mechanisms. HCAECs were treated with oxidized low-density lipoprotein (ox-LDL), angiotensin II (Ang-II), or high glucose (HG) with or without aspirin stimulation. The expression levels of endothelial nitric oxide (NO) synthase (eNOS), p-eNOS, LC3, p62, phosphor-nuclear factor kappa B (p-NF-κB), p-p38 mitogen-activated protein kinase (p-p38 MAPK), and Beclin-1 were detected via immunoblotting analysis. Concentrations of soluble intercellular adhesion molecule-1 (sICAM-1) and soluble vascular cell adhesion molecule-1 (sVCAM-1) were measured via ELISA. NO levels were determined using the Griess reagent. Autophagic flux was tracked by tandem mRFP-GFP-tagged LC3. Results showed that aspirin increased eNOS level and reduced injury to the endothelial cells (ECs) caused by ox-LDL, Ang-II, and HG treatment in a dose-dependent manner. Aspirin also increased the LC3II/LC3I ratio, decreased p62 expression, and enhanced autophagic flux (autophagosome and autolysosome puncta) in the HCAECs. p-NF-κB and p-p38 mitogen-activated protein kinase inhibition, sVCAM-1 and sICAM-1 secretion, and eNOS activity promotion by aspirin treatment were found to be dependent on Beclin-1. These results suggested that aspirin can protect ECs from ox-LDL-, Ang-II-, and HG-induced injury by activating autophagy in a Beclin-1-dependent manner.

Restricted access

Aegilops sharonensis (Sharon goatgrass) is a valuable source of novel high molecular weight glutenin subunits, resistance to wheat rust, powdery mildew, and insect pests. In this study, we successfully hybridized Ae. sharonensis as the pollen parent to common wheat and obtained backcross derivatives. F1 intergeneric hybrids were verified using morphological observation and cytological and molecular analyses. The phenotypes of the hybrid plants were intermediate between Ae. sharonensis and common wheat. Observations of mitosis in root tip cells and meiosis in pollen mother cells revealed that the F1 hybrids possessed 28 chromosomes. Chromosome pairing at metaphase I of the pollen mother cells in the F1 hybrid plants was low, and the meiotic configuration was 25.94 I + 1.03 II (rod). Two pairs of primers were screened out from 150 simple sequence repeat markers, and primer WMC634 was used to identified the presence of the genome of Ae. sharonensis. Sequencing results showed that the F1 hybrids contained the Ssh genome of Ae. sharonensis. The sodium dodecyl sulfate polyacrylamide gel electrophoresis profile showed that the alien high molecular weight glutenin subunits of Ae. sharonensis were transferred into the F1 and backcross derivatives. The new wheat-Ae. sharonensis derivatives that we have produced will be valuable for increasing resistance to various diseases of wheat and for improving the quality of bread wheat.

Restricted access

Prorocentrum donghaiense caused large-scale red tides off Chinese coast in recent years. Expressed sequence tag (EST) analysis was carried out for this dinoflagellate in order to identify the genes involved in its proliferation and death. A cDNA library was constructed for P. donghaiense at late exponential growth phase, and 308 groups of EST were generated, which include 36 contigs and 272 singletons. Among 22 groups showed homologies with known genes, 2 matched significantly with caspase and proliferating cell nuclear antigen. Caspase and proliferating cell nuclear antigen are 2 key proteins involved in programmed cell death. Their identification evidenced preliminarily the induction of PCD in aging P. donghaiense. The identified included also calmodulin and protein phosphatase, two proteins involved in diverse cell processes including PCD by binding to or modifying others.

Restricted access