Search Results

You are looking at 1 - 3 of 3 items for

  • Author or Editor: Magda Pál x
  • All content x
Clear All Modify Search

Plants have developed various mechanisms to protect themselves against oxidative stress. One of the most important non-enzymatic antioxidants is ascorbic acid. There is thus a need for a rapid, sensitive method for the analysis of the reduced and oxidised forms of ascorbic acid in crop plants. In this paper a simple, economic, selective, precise and stable HPLC method is presented for the detection of ascorbate in plant tissue. The sensitivity, the short retention time and the simple isocratic elution mean that the method is suitable for the routine quantification of ascorbate in a high daily sample number. The method has been found to be better than previously reported methods, because of the use of an economical, readily available mobile phase, UV detection and the lack of complicated extraction procedures. The method has been tested on Arabidopsis plants with different ascorbate levels and on wheat plants during Cd stress.

Restricted access
Cereal Research Communications
Authors: Ferenc Rácz, Szilvia Hidvégi, Sándor Záborszky, Magda Pál, and Csaba Marton
Restricted access
Acta Agronomica Hungarica
Authors: G. Kocsy, Magda Pál, A. Soltész, G. Szalai, Á. Boldizsár, V. Kovács, and T. Janda

Low temperature stress results in significant yield losses in cereals. Cereals of subtropical origin like maize and rice are severely damaged at temperatures below 10°C and are killed at subzero temperatures. This stress effect is called chilling. In contrast, cereals originating from the temperate zone (wheat, barley, rye and oat) may survive short periods even between −10 and −20°C, depending on the species and varieties, so they are freezing-tolerant to various extents. For the winter type of these cereals a gradual decrease in temperature up to −4°C results in cold acclimation, which increases their freezing tolerance. In addition, it fulfils their vernalization requirement, which is necessary for the correct timing of the vegetative to generative transition. During both chilling and freezing, oxidative stress is induced. Although the accumulation of high concentrations of reactive oxygen species may be lethal, a moderate increase in their level may activate various defence mechanisms. In this review the role of reactive oxygen species, antioxidants, carbohydrates, free amino acids, polyamines and hormones in the response to low temperature stress in cereals will be described. The effect of light and the use of the model plant Brachypodium distachyon L. to reveal the biochemical and molecular biological background of this response will also be discussed.

Restricted access