Search Results

You are looking at 1 - 2 of 2 items for

  • Author or Editor: Magdalen G. Schluter x
  • Refine by Access: All Content x
Clear All Modify Search

Background and aims

To date, no research has examined the viability of using behavioral tasks typical of cognitive and neuropsychology within addiction populations through online recruitment methods. Therefore, we examined the reliability and validity of three behavioral tasks of impulsivity common in addiction research in a sample of individuals with a current or past history of problem gambling recruited online.

Methods

Using a two-stage recruitment process, a final sample of 110 participants with a history of problem or disordered gambling were recruited through MTurk and completed self-report questionnaires of gambling involvement symptomology, a Delay Discounting Task (DDT), Balloon Analogue Risk Task (BART), Cued Go/No-Go Task, and the UPPS-P.

Results

Participants demonstrated logically consistent responding on the DDT. The area under the empirical discounting curve (AUC) ranged from 0.02 to 0.88 (M = 0.23). The BART demonstrated good split-third reliability (ρs = 0.67 to 0.78). The tasks generally showed small correlations with each other (ρs = ±0.06 to 0.19) and with UPPS-P subscales (ρs = ±0.01 to 0.20).

Discussion and conclusions

The behavioral tasks demonstrated good divergent validity. Correlation magnitudes between behavioral tasks and UPPS-P scales and mean scores on these measures were generally consistent with the existing literature. Behavioral tasks of impulsivity appear to have utility for use with problem and disordered gambling samples collected online, allowing researchers a cost efficient and rapid avenue for conducting behavioral research with gamblers. We conclude with best-practice recommendations for using behavioral tasks using crowdsourcing samples.

Open access

Abstract

Background and aims

The Brief Screener for Substance and Behavioral Addictions (SSBAs) was developed to assess a common addiction construct across four substances (alcohol, tobacco, cannabis, and cocaine), and six behaviors (gambling, shopping, videogaming, eating, sexual activity, and working) using a lay epidemiology perspective. This paper extends our previous work by examining the predictive utility of the SSBA to identify self-attributed addiction problems.

Method

Participants (N = 6,000) were recruited in Canada using quota sampling methods. Receiver Operating Characteristics (ROCs) analyses were conducted, and thresholds established for each target behavior's subscale to predict self-attributed problems with these substances and behaviors. For each substance and behavior, regression models compared overall classification accuracy and model fit when lay epidemiologic indicators assessed using the SSBA were compared with validated screening measures to predict selfattributed problems.

Results

ROC analyses indicted moderate to high diagnostic accuracy (Area under the curves (AUCs) 0.73–0.94) across SSBA subscales. Thresholds for identifying self-attributed problems were 3 for six of the subscales (alcohol, tobacco, cannabis, cocaine, shopping, and gaming), and 2 for the remaining four behaviors (gambling, eating, sexual activity, and working). Compared to other instruments assessing addiction problems, models using the SSBA provided equivalent or better model fit, and overall had higher classification accuracy in the prediction of self-attributed problems.

Discussion and conclusions

The SSBA is a viable screening tool for problematic engagement across ten potentially addictive behaviors. Where longer screening tools are not appropriate, the SSBA may be used to identify individuals who would benefit from further assessment.

Open access