Search Results

You are looking at 1 - 2 of 2 items for

  • Author or Editor: Manuel Monte x
  • Refine by Access: All Content x
Clear All Modify Search

Abstract

Knudsen mass-loss effusion technique was used for measuring the vapor pressures at different temperatures of the following crystalline compounds: diphenylacetic acid, between 357.27 and 379.08 K; triphenylacetic acid, between 418.98 and 436.97 K; 2,2-diphenylpropanoic acid, between 366.08 and 386.00 K; 3,3-diphenylpropanoic acid, between 366.09 and 386.03 K; 3,3,3-triphenylpropanoic acid, between 402.17 and 420.10 K. From the temperature dependence of the vapor pressure of each crystalline compound, the standard (p 0 = 105 Pa) molar enthalpies and Gibbs energies of sublimation, at T = 298.15 K, were derived. The measured thermodynamic properties are compared with literature results for phenylacetic and phenylpropanoic acids and correlations for estimation of the vapor pressures from the enthalpy of sublimation and the temperature of fusion of these and other compounds are presented.

Restricted access

Abstract  

The vapour pressures of six para-substituted benzoic acids were measured using the Knudsen effusion method within the pressure range (0.1–1 Pa) in the following temperature intervals: 4-hydroxybenzoic acid (365.09–387.28) K; 4-cyanobenzoic acid (355.14–373.28) K; 4-(methylamino)benzoic acid (359.12–381.29) K; 4-(dimethylamino)benzoic acid (369.29–391.01) K; 4-(acetylamino)benzoic acid (423.10–443.12) K; 4-acetoxybenzoic acid (351.28–373.27) K. From the temperature dependence of the vapour pressure, the standard molar enthalpy, entropy and Gibbs energy of sublimation, at the temperature 298.15 K, were derived for each of the studied compounds using estimated values of the heat capacity differences between the gaseous and the crystalline phases. Equations for estimating the vapour pressure of para substituted benzoic acids at the temperature of 298.15 K are proposed.

Restricted access