Search Results

You are looking at 1 - 2 of 2 items for

  • Author or Editor: Marek Wojnicki x
Clear All Modify Search

This paper describes the method of onion-like nanoparticles synthesis in a microflow. As the core of a material, platinum nanoparticles were used. The first shell consists of metallic palladium, and the second one is metallic gold, respectively. The synthesis of onion-like nanostructure was performed using microflow reactors system, which consists of 3 independent elements. As the reducing agent of precious metals ions, vitamin C was used. To prevent NPs from the aggregation, a polyvinyl alcohol as the stabilizing agent was applied.

Restricted access
Journal of Flow Chemistry
Authors: Marek Wojnicki, Magdalena Luty-Błocho, Krzysztof Mech, Justyna Grzonka, Krzysztof Fitzner and Krzysztof Kurzydłowski

A composite material consisting of metallic platinum nanoparticles and reduced graphene oxide was successfully obtained in microflow reactor. Moreover, subnanometric platinum particles were observed. Reduced graphene oxide plays an important role as a stabilizing agent for platinum nanoparticles. Reduced graphene oxide coverage and platinum particle size as well as size distribution depend mainly on initial concentration of platinum(IV) ions. High level of reduced graphene oxide coverage by platinum nanoparticles (PtNPs) was obtained and is equal to 71%. This in turn effects significantly the mass ratio of reduced graphene oxide to PtNPs which is equal to 49% (w/w). Fourier transform infrared (FT-IR) and X-ray photoelectron spectroscopy (XPS) analysis of the obtained materials were performed. Also, catalytic properties of the obtained composite material consisting of PtNPs at reduced graphene oxide surface, towards electrochemical glucose oxidation, were investigated. It was found that the studied materials exhibit high catalytic activity for glucose electro-oxidation process.

Restricted access