Search Results
You are looking at 1 - 10 of 10 items for
- Author or Editor: Marta M. Conceiçăo x
- Refine by Access: All Content x
Thermal and kinetic study of statins
Simvastatin and lovastatin
Abstract
Statins are a group of lipoproteins that are used in medicine to treat the high cholesterol level. The effectiveness of statins in reducing the cholesterol level is significant and in long time scale the reduction of the cholesterol level helps to avoid the incidence of degenerative diseases. Simvastatin and lovastatin are belonging to the ‘statins’ family, one of the pharmacologic groups used in the control of dislipidemy. The objective of this work is the thermal stability and kinetic study of the active forms of simvastatin and lovastatin. Thermal data indicated that lovastatin and simvastatin are stable up to 190 and 170°C in air and up to 205 and 203°C in nitrogen, respectively. For melting temperatures DSC curves showed good correlation with the literature data. Comparing the activation energies of the statins at heating rate of 10°C min–1, lovastatin is more stable than simvastatin under the applied experimental conditions.
Abstract
The most feasible alternative among fuels derived from biomass seems to be the biodiesel, having the required characteristics for a total or partial substitution of diesel oil. Therefore, the aim of this work is to evaluate the thermal and rheological behavior of the blends of diesel with the methanol biodiesel obtained from soybean oil, using B5, B15 and B25 blends. All thermogravimetric curves exhibited one overlapping mass loss step in the 35–280C temperature range at air atmosphere and one step between 37–265C in nitrogen. The rheological study showed a Newtonian behavior (n=1) for all blends.
Abstract
Diesel oil has an important role in the field of urban traffic as well as in the transportation of products. However, the amount of the non-renewable sources is continuously decreasing. This fact and the environmental requirements brought the necessity to search for other, renewable sources. This paper aimed the dynamic kinetic calculation of thermal decomposition of castor oil, methanol biodiesel and ethanol biodiesel using Coats–Redfern, Madhusudanan and Ozawa methods. On the base of the thermogravimetric curves the following thermal stability order could be established: castor oil>ethanol biodiesel>methanol biodiesel. Kinetic data presented coherent results. Methanol biodiesel presented lower activation energy than ethanol biodiesel, suggesting that methanol biodiesel has a better quality for combustion.
Abstract
The diversity of raw materials and technological routes employed in the biodiesel production has resulted in products with different chemical properties. This non-uniformity in the biodiesel composition may influence to the fuel quality. The aim of this study was to evaluate biodiesel blends of passion fruit and castor oil in different proportions and their thermal stability. Biodiesel blends of passion fruit and castor oil presented parameters in the standards of the Petroleum, Natural Gas and Biofuels National Agency. The TG curves indicated that castor oil biodiesel was more stable. Passion fruit biodiesel has a high content of oleic and linoleic acids, which are more susceptible to oxidation. Biodiesel blend of passion fruit and castor oil 1:1 increased the thermal stability in relation to passion fruit biodiesel. Biodiesel blend of passion fruit and castor oil 1:2 presented higher thermal stability, because castor oil has a high content of ricinoleic acid.
Abstract
This work evaluates the thermal and kinetic behaviour of corn biodiesel obtained by the methanol and ethanol routes. As to the TG curves, in air three thermal decomposition steps are for the methanol biodiesel and two steps are for the ethanol biodiesel. These steps are related to the evaporization and/or combustion of the methyl and ethyl esters, respectively. The corn oil presented four thermal decomposition steps in air, and only one step in nitrogen. These steps were attributed to the evaporization and/or decomposition of triglycerides. The TG and DTA profiles of the biodiesel approach the mineral diesel oil ones.
Abstract
This work presents the characterization and the kinetic compensation effect of corn biodiesel obtained by the methanol and ethanol routes. The biodiesel was characterized by physico-chemical analyses, gas chromatography, nuclear magnetic resonance and thermal analysis. The physico-chemical properties indicated that the biodiesel samples meet the specifications of the Brazilian National Agency of Petroleum, Natural Gas and Biofuels (ANP) standards. The analyses by IR and 1H NMR spectroscopy indicated the ester formation. Gas chromatography indicated that biodiesel was obtained with an ester content above 97%. The kinetic parameters were determined with three different heating rates, and it was observed that both the methanol and ethanol biodiesel obeyed the kinetic compensation effect.