Search Results

You are looking at 1 - 2 of 2 items for

  • Author or Editor: Masayoshi Yamamoto x
  • Refine by Access: All Content x
Clear All Modify Search


Uranium in acidic mine drainage from the former Ogoya Mine in Ishikawa Prefecture, Japan, and in neutral surface waters from its surrounding rivers was investigated from the viewpoint of radioactive disequilibrium in the uranium decay series. Water samples were periodically collected from the mine pithead and its surrounding rivers and their U isotopes (238U and 234U) were measured together with chemical components. The 238U concentrations in the water samples varied widely from 0.0036 to 0.78 mBq/L with a factor of about 200. High 238U concentrations were observed in the strongly acidic drainage (pH: around 3.5) from the pithead and the 234U/238U activity ratios showed significant values of as high as 10–15. By taking into account of the measurement of Th isotopes, it appeared that probable processes controlling the high 234U/238U activity ratios in acidic mine drainage were due to that the acidic water flowing from the mine pithead was formed only in the upper water layer of the pits and 234U was preferentially leached in the deeper underground water under the neutral and reducing conditions.

Restricted access


Radiochemical results of U isotopes (234U, 235U and 238U) and their activity ratios are reported for well waters as local sources of drinking waters collected from the ten settlements around the Semipalatinsk Nuclear Test Site (SNTS), Kazakhstan. The results show that 238U varies widely from 3.6 to 356 mBq/L (0.3–28.7 μg/L), with a factor of about 100. The 238U concentrations in some water samples from Dolon, Tailan, Sarzhal and Karaul settlements are comparable to or higher than the World Health Organization’s restrictive proposed guideline of 15 μg (U)/L. The 234U/238U activity ratios in the measured water samples are higher than 1, and vary between 1.1 and 7.9, being mostly from 1.5 to 3. The measured 235U/238U activity ratios are around 0.046, indicating that U in these well waters is of natural origin. It is probable that the elevated concentration of 238U found in some settlements around the SNTS is not due to the close-in fallout from nuclear explosions at the SNTS, but rather to the intensive weathering of rocks including U there. The calculated effective doses to adults resulting from consumption of the investigated waters are in the range 1.0–18.7 μSv/y. Those doses are lower than WHO and IAEA reference value (100 μSv/y) for drinking water.

Open access