Search Results

You are looking at 1 - 6 of 6 items for

  • Author or Editor: Michel Weber x
  • All content x
Clear All Modify Search

Summary  

Let \documentclass{aastex} \usepackage{amsbsy} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{bm} \usepackage{mathrsfs} \usepackage{pifont} \usepackage{stmaryrd} \usepackage{textcomp} \usepackage{upgreek} \usepackage{portland,xspace} \usepackage{amsmath,amsxtra} \pagestyle{empty} \DeclareMathSizes{10}{9}{7}{6} \begin{document} $S_n$ \end{document}, \documentclass{aastex} \usepackage{amsbsy} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{bm} \usepackage{mathrsfs} \usepackage{pifont} \usepackage{stmaryrd} \usepackage{textcomp} \usepackage{upgreek} \usepackage{portland,xspace} \usepackage{amsmath,amsxtra} \pagestyle{empty} \DeclareMathSizes{10}{9}{7}{6} \begin{document} $n=1,2\dots$ \end{document} be the sequence of partial sums of independent spin random variables. We show that the distribution value of the divisors of \documentclass{aastex} \usepackage{amsbsy} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{bm} \usepackage{mathrsfs} \usepackage{pifont} \usepackage{stmaryrd} \usepackage{textcomp} \usepackage{upgreek} \usepackage{portland,xspace} \usepackage{amsmath,amsxtra} \pagestyle{empty} \DeclareMathSizes{10}{9}{7}{6} \begin{document} $S_n$ \end{document}, is intimately related to the Zeta-Riemann function via the functional equation and Theta elliptic functions.

Restricted access

Summary  

By applying the majorizing measure method, we obtain a new estimate  of the supremum of random  trigonometric sums. We show that this estimate is strictly stronger than the well-known Salem-Zygmund's estimate, as well as recent general formulations of it obtained by the author. This improvement is obtained by considering the case when the characters are indexed on  sub-exponentially growing sequences of integers. Several remarkable examples are studied.

Restricted access

Abstract  

We give several applications of an identity for sums of weakly stationary sequences due to Ky Fan.

Restricted access

Abstract  

Let f(n) be a strongly additive complex-valued arithmetic function. Under mild conditions on f, we prove the following weighted strong law of large numbers: if X,X 1,X 2, … is any sequence of integrable i.i.d. random variables, then

\documentclass{aastex} \usepackage{amsbsy} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{bm} \usepackage{mathrsfs} \usepackage{pifont} \usepackage{stmaryrd} \usepackage{textcomp} \usepackage{upgreek} \usepackage{portland,xspace} \usepackage{amsmath,amsxtra} \pagestyle{empty} \DeclareMathSizes{10}{9}{7}{6} \begin{document} $$\mathop {\lim }\limits_{N \to \infty } \frac{{\sum\nolimits_{n = 1}^N {f(n)X_n } }} {{\sum\nolimits_{n = 1}^N {f(n)} }} = \mathbb{E}Xa.s.$$ \end{document}

Restricted access