Search Results

You are looking at 1 - 5 of 5 items for

  • Author or Editor: Mohamed Didi x
  • All content x
Clear All Modify Search

Absract  

A new chelating polymeric sorbent has been developed using polystyrene resin grafted with ethylenediamino tris(methylenephosphonic) acid. After characterisation by FTIR and elementary analysis, the new grafted resin has been investigated in liquid–solid extraction of uranium(VI). The influence of analytical parameters including pH, amount of resin, metal ion concentration, sample volume and ionic strength were investigated on the recovery of U(VI). Adsorption kinetic and isotherm studies were also carried out to understand the nature of the sorption of uranium(VI) by the resin. The total sorption capacity was found to be 41.76 mg/g under optimum conditions. The total desorption of the sorbed uranium ions was successfully performed with 0.1 M ammonium carbonate. Further, the effect of temperature was realized and the thermodynamic parameters were calculated.

Restricted access

Abstract  

A micelle-mediated extraction (CPE) procedure has been developed to remove trace amounts of uranium from wastewater using a non-ionic surfactant (Triton (X-100)) and lipophilic chelating extracting agent (D2EHPA) in acetate medium. The methodology used is based on the formation of metal complexes soluble in a micellar phase of a non-ionic surfactant. The uranyl ions complexes are then extracted into the surfactant-rich phase at a ambient temperature. The effects of different operating parameters such as the concentrations of Triton (X-100), D2EHPA and metal ions, temperature, sodium acetate rate and pH on the cloud point extraction of uranyl ions were studied in details and a set of optimum conditions were obtained. The results showed, without contribution of energy (ambient temperature), that up to 1000 ppm of uranyl ions can quantitatively be removed (>97 %) in a single CPE extraction using optimum conditions.

Restricted access

Abstract  

Removal of uranium(VI) ions from acetate medium in aqueous solution was investigated using Lewatit TP260 (weakly acidic, macroporous-type ion exchange resin with chelating aminomethylphosphonic functional groups) in batch system. The parameters that affect the uranium(VI) sorption, such as contact time, solution pH, initial uranium(VI) concentration, adsorbent dose and temperature have been investigated. Results have been analyzed by Langmuir and Freundlich isotherm; the former was more suitable to describe the sorption process. The moving boundary particle diffusion model only fits the initial metal adsorption on the resin. The rate constant for the uranium sorption by Lewatit TP260 was 0.441 min−1 from the first order rate equation. The total sorption capacity was found to be 58.33 mg g−1 under optimum experimental conditions. Thermodynamic parameters (ΔH = 61.74 kJ/mol; ΔS = 215.3 J/mol K; ΔG = −2.856 kJ/mol) showed the adsorption of an endothermic process and spontaneous nature, respectively.

Restricted access

Abstract  

A new chelating polymeric sorbent has been developed using polystyrene resin grafted with phosphonic acid. After characterization by FTIR and elementary analysis, the new resin has been investigated in liquid–solid extraction of europium(III). The results indicated that phosphonic resin could adsorb Eu(III) ion effectively from aqueous solution. The adsorption was strongly dependent on pH of the medium with enhanced adsorption as the pH value of 6.5. The influence of other analytical parameters including contact time, amount of resin, metal ion concentration, and ionic strength were investigated. The maximum uptake capacity of Eu(III) ions was 122.6 mg/g grafted resin at ambient temperature, at an initial pH value of 6.50. The overall adsorption process was best described by pseudo first-order kinetic. When Freundlich and Langmuir isotherms were tested, the latter had a better fit with the experimental data. Furthermore, Eu(III) could be eluted by using 1.0 mol/L H2SO4 solution and the grafted resin could be regenerated and reused.

Restricted access

Abstract  

A novel sorbent resin consisting of a Phosphonic Acid grafted on Merrifield Resin (PA-MR) for the extraction of uranyl from nitrate media is described. The sorption behaviour of uranyl cation on PA-MR was investigated using batch equilibrium technique. The effects of parameters such as shaking speed, pH levels, contact time, metal concentrations, ionic strength and temperature were reported. The results show that the sorption capacity increases with increasing both initial uranyl ion concentration and temperature and decreases with increasing ionic strength. Therefore, the optimum condition for the present study should be using 6.6 mg adsorbent per 1.0 mg uranyl in solution with pH 3.6 and shaking at 250 rpm for 180 min. The adsorption behavior of the system was also investigated and found to be in line with Langmuir isotherm. The kinetic data was well described by the pseudo second-order. Thermodynamics data leads to endothermic process ∆H = + 31.03 kJ−1 mol−1, ∆S = + 146.64 J mol−1 K−1 and ∆G = −11.96 kJ mol−1 at 20 K. ∆G decreased to negatives values with increasing temperature indicating that the process was more favoured at high temperature.

Restricted access