Search Results

You are looking at 1 - 5 of 5 items for

  • Author or Editor: Mohammad S. Albdour x
  • Refine by Access: All Content x
Clear All Modify Search

Abstract

With the rapid importance of high-performance energy modeling of buildings, whole-building energy simulation engines are rapidly used in the decision-making process. However, there are tens of engines in the market, which makes the choice of design engine very challenging. This article provides a comparison of the applications of whole-building energy simulation to predict a significant number of systems. As a result, the selected engines will be compared to establish their characteristics and abilities. Nevertheless, the focus will be placed on: generic criteria; envelope; lighting; service hot water; Heating-ventilation; and renewable systems. However, the authors found that an engine could be used extensively in one system and has limited capabilities in another system.

Restricted access

Abstract

There are several outdoor microclimatic simulation software tools in use. The current research aims to identify some of the most prominent computer-based tools based on their capacity of predicting a significant number of variables and compare them in order to establish their differences. This article provides an overview of the applications of computational fluid dynamics in outdoor performance simulation, focused on three topics: general criteria, specific outputs, strategies, and elements can be investigated by the tool. The results have shown that ENVI-met tool is capable of predicting and simulating the set microclimate variables.

Open access

Abstract

Numerical research in the context of urban in a humid continental climate zone is still limited. The aim of modeling the case study is to assess the performance of outdoor thermal comfort parameters and investigate their capabilities in achieving the outdoor thermal comfort. A computer-based tool is used to quantitatively study the outdoor thermal comfort and its weather parameters. The parameters have been analyzed using ENVI-met tool and then compared against different comfort scales like relative humidity comfort scale, the predicted mean vote scale as well as other scales and standards. The results have shown that the average predicted mean vote value is +4 (very hot), the average air temperature is hot, the average wind speed is light breeze and the relative humidity falls within the comfort range. However, street orientation, shading, water bodies and plantation play a significant role in increasing and decreasing the outdoor thermal comfort.

Open access

Abstract

The relationship between water body (fountains) scale and climate parameters like wind speed, air temperature, relative humidity, as well as thermal comfort index was modeled and analyzed via Envi-met code. Taking the water impact and factors analysis as a research object, the factors mainly discussed in this research are square area to water-body area ratio and the location of the water element. However, the computational fluid dynamics simulations were conducted on the following scenarios: 3% (original base case), 6%, and 9% of the total square's area, then the outputs of the two simulation results were compared to the original base case. The results revealed that water scale has a slight effect on the micro-climate of the built environment in the summertime in moderately warm-wet climate zone. However, it is beneficial to adjust temperature and humidity in public spaces of central European cities. Nonetheless, the main aim of this paper is to quantitatively investigate the impact of the water bodies on the urban weather parameters and human thermal comfort under the influence of different scale ratios in Pecs-Hungary.

Open access

Abstract

As streets cover almost twenty-five percentages of the urban open spaces, designing streets is a vital issue in creating thermal comfort for urban environmental design. The geometry of the street (height/width ratio) as well as orientation directly influences the airspeed, solar access in urban canyon and as a result thermal comfort at the pedestrian level. This study examined the street geometry case study's scenarios with different street geometries and investigates its effects on outdoor thermal comfort as well as the weather parameters. However, according to the matrix assessment conducted by the author, the vast street canyons (height/width=0.65 m/14.5 m with an orientation parallel to the prevailing wind direction achieved the best results. Nevertheless, the aim of this paper is to investigate the impact of street canyon geometry on outdoor thermal comfort and its parameters in the summertime using numerical modeling.

Open access