Search Results

You are looking at 1 - 3 of 3 items for

  • Author or Editor: Muhammad Mazhar x
  • Refine by Access: All Content x
Clear All Modify Search

Abstract  

Potassium iron(III) hexacyanoferrate(II) supported on poly methyl methacrylate, has been developed and investigated for the removal of lithium, rubidium and cesium ions. The material is capable of sorbing maximum quantities of these ions from 5.0, 2.5 and 4.5 M HNO3 solutions respectively. Sorption studies, conducted individually for each metal ion, under optimized conditions, demonstrated that it was predominantly physisorption in the case of lithium ion while shifting to chemisorption with increasing ionic size. Distribution coefficient (K d) values followed the order Cs+ > Rb+ > Li+ at low concentrations of metal ions. Following these findings Cs+ can preferably be removed from 1.5 to 5 M HNO3 nuclear waste solutions.

Restricted access

Abstract  

Potassium iron(III)hexacyanoferrate(II) supported on poly metylmethacrylate has been synthesized and investigated for the strontium(II) removal from HNO3 and HCl solutions. The ion exchange material characterized by different techniques and found to be stable in 1.0–4.0 M HNO3 solutions, has been used to elaborate different parameters related to ion exchange and sorption processes involved. The data collected suggested its use to undertake removal of Sr(II) from more acidic active waste solutions. Thus the material synthesized had been adjudged to present better chances of application for Sr(II) removal as compared to other such materials.

Restricted access
Journal of Thermal Analysis and Calorimetry
Authors:
Rabia Nazir
,
Muhammad Mazhar
,
Tehmina Wakeel
,
Muhammad J. Akhtar
,
Muhammad Siddique
,
Muhammad Nadeem
,
Nawazish A. Khan
, and
Muhammad R. Shah

Abstract

Pyrolysis of trisbipyridineiron(II) chloride under controlled thermal conditions and inert atmosphere of argon gas yields a residue of iron nanoparticles. Evolved gas analysis by GC–MS and 1H NMR revealed emission of bipyridine, 6-chlorobipyridine, 6,6′-dichlorbipyridine, bipyridine hydrochloride, and hydrochloric acid as decomposition products. CHN, XRPD, EDXRF, TEM, AFM, and 57Fe Mössbauer spectroscopy of the residue indicated formation of pure iron nanoparticles in the size range of 50–72 nm. Based on these results a mechanism for thermal degradation of trisbipyridineiron(II) chloride has been worked out.

Restricted access