Search Results

You are looking at 1 - 2 of 2 items for

  • Author or Editor: N. Blagojević x
  • Refine by Access: All Content x
Clear All Modify Search

Abstract  

The crystallization of K2O·TiO2·3GeO2 glass under non-isothermal condition was studied. In powdered glass with particle sizes less than 0.15 mm, surface crystallization was dominant and an activation energy of crystal growth of E a,s=327±50 kJ mol−1 was calculated. In the size range 0.15 to 0.45 mm, both surface and volume crystallization occurred. For particle sizes >0.45 mm, volume crystallization dominated with spherulitic morphology of the crystals growth and E a,v=359±64 kJ mol−1 was calculated.

Restricted access

Abstract  

The effect of replacing 20 mol% of GeO2 by TiO2 on the properties of potassium germanate glass was investigated. The structure and devitrification behaviour of glasses were studied by Fourier transform infrared spectroscopy (FTIR), differential thermal analysis (DTA) and X-ray diffraction (XRD). It was observed that potassium titanium germanate has a higher glass transition temperature and a higher thermal stability vs. crystallization. The presence of two exothermic peaks on the DTA curve of potassium germanate glass indicates the complex crystallization process. The XRD pattern of this glass heated at the temperature of the first crystallization peak indicated that the GeO2 and K2Ge7O15 were formed. Only the K2TiGe3O9 phase was identified, in a case when potassium titanium germanate glass was heated at the temperature of the crystallization peak.

Restricted access