Search Results

You are looking at 1 - 2 of 2 items for

  • Author or Editor: N. Gai x
  • All content x
Clear All Modify Search


Formaldehyde in aquatic products was determined by micellar electrokinetic capillary chromatography (MEKC) after derivatization with 2,4-dinitrophenylhydrazine. Separation was carried out at 25 °C and 25 kV, using a fused silica capillary (75 µ internal diameter; 50.5 cm effective length) and an ultraviolet detector set at 360 nm. The optimal background electrolyte was 20 mM sodium tetraborate and 20 mM sodium dodecyl sulfate at pH 9.0 with 3 s hydrodynamic injection at 30 mbar. Electrophoretic analysis took approximately 6.5 min. The correlation coefficient of the calibration curve was 0.999 over the concentration range 2.0–100.0 mg L−1, and the LOD and LOQ values were 0.57 and 1.89 µg mL−1, respectively. The recoveries were from 83.7% to 97.2% with steam distillation as the sample pretreatment method.

Restricted access
Journal of Thermal Analysis and Calorimetry
Authors: J. Yao, F. Wang, L. Tian, Y. Zhou, H. Chen, K. Chen, N. Gai, R. Zhuang, T. Maskow, B. Ceccanti, and G. Zaray


Using TAM III multi-channel calorimetry combined with direct microorganism counting (bacteria, actinomycetes and fungi) under laboratory conditions, we determined the microbial population count, resistance and activity toward cadmium (Cd(II)) and hexavalent chromium (Cr(VI)) toxicity in soil. The thermokinetic parameters, which can represent soil microbial activity, were calculated from power-time curves of soil microbial activity obtained by microcalorimetric measurement. Simultaneous application of the two methods showed that growth rate constant (k), peak-heat output power (P max) and the number of living microorganisms decreased with increasing concentration of Cd and Cr. The accumulation of Cr on E. coli was conducted by HPLC-ICP-MS. Cr6+ accumulation by Escherichia coli was increased steadily with increasing Cr6+ concentration. The results revealed that the change in some thermo-kinetic parameters could have good corresponding relationship with metal accumulation. Our work also suggests that microcalorimetry is a fast, simple, more sensitive, on-line and in vitro method that can be easily performed to study the toxicity of different species of heavy metals on microorganism compared to other biological methods, and can combine with other analytic methods to study the interaction mechanism between environmental toxicants and microbes.

Restricted access