Search Results

You are looking at 1 - 3 of 3 items for

  • Author or Editor: N. I. Ionescu x
  • Refine by Access: All Content x
Clear All Modify Search

Abstract

The in situ electrical properties and the catalytic activity of copper ferrite obtained by co-precipitation and thermal decomposition of polynuclear coordination compounds were studied in the propane oxidation reaction. The sample prepared by complexation had a better catalytic activity. Based on the conductivity data and the relative phase distribution in fresh and used compounds, the results are discussed in terms of the redox-type mechanism.

Restricted access

Abstract

The electrical conductivity and the catalytic activity of SnO2 loaded TiO2 (anatase) particles were investigated in operando conditions. SnO2 depositions over commercial TiO2 samples (Sigma Aldrich and Rhone Poulenc) were obtained by the impregnation method. The samples were characterized by XRD, SEM/EDX and BET–N2 adsorption techniques. The AC electrical conductivity of the samples were measured between 25 and 400 °C under various atmospheres. The effect of the reactant mixture on the electrical conductivity and the catalytic performances of the samples were tested in propene oxidation. The results showed that the conductivity of SnO2/TiO2 samples depends strongly on the surface area of TiO2 support. The reducing effect of propene is more evident for higher surface area catalysts, these one showing also higher activity. On the other hand, the SnO2 deposition results in an increase of catalytic performances.

Restricted access
Reaction Kinetics, Mechanisms and Catalysis
Authors: Viorel Chihaia, Karl Sohlberg, M. Scurtu, C. Hornoiu, M. Caldararu, C. Munteanu, G. Postole, N. I. Ionescu, T. Yuzhakova, and A. Redey

Abstract

The surface dynamics of SnO2/γ-Al2O3 catalysts with different tin dioxide loadings (3 and 20 wt%) prepared by the impregnation method were investigated by using in situ electrical/dielectric measurements. The samples were characterized by BET, inductively coupled plasma atomic emission spectroscopy and X-ray diffraction methods. The propylene oxidation reaction, in the temperature range of 30–400 °C, was used to identify the catalytic activity of SnO2 based catalysts. Results are discussed on the bases of the electrical changes accompanying variation of the active phase content. The conductance/capacitance of supported samples evidenced the reciprocal influence of the support and of the guest oxide.

Restricted access