Search Results

You are looking at 1 - 10 of 13 items for

  • Author or Editor: N. Pandey x
  • Refine by Access: All Content x
Clear All Modify Search

Abstract

The concept of a Lie recurrence was introduced by the first author [6]. It is an infinitesimal transformation with respect to which the Lie derivative of a curvature tensor is proportional to itself. Apart from other results related to a Lie recurrence, it was established that the Weyl projective curvature tensor is Lie recurrent with respect to a Lie recurrence but its converse is not necessarily true. However, an infinitesimal transformation with respect to which the Weyl projective curvature tensor and the Ricci tensor are Lie recurrent, is necessarily a Lie recurrence. Singh [12] studied an infinitesimal transformation with respect to which the Lie derivative of the curvature tensor is proportional to itself and called such transformation as curvature inheritance. Obviously, a curvature inheritance is nothing but a Lie recurrence. Singh [13] also considered a curvature inheritance which is a projective motion and called it a projective curvature inheritance. Gatoto and Singh [1,2] studied -curvature inheritance and projective -curvature inheritance. Pandey and Pandey [9] studied projective Lie recurrence. Mishra and Yadav [3] studied projective curvature inheritance in an NP-F n . In the present paper we have established that an infinitesimal transformation in a Finsler space is Lie recurrence if and only if the normal projective curvature tensor is Lie recurrent. A part from this result we have generalized almost all theorems of Mishra and Yadav [3].

Restricted access

Abstract  

A simple and rapid, laser fluorimetric method for the determination of uranium concentration in raffinate stream of Purex process during reprocessing of spent nuclear fuel has been developed. It works on the principle of detection of fluorescence of uranyl complex formed by using fluorescence enhancing reagent like sodium pyrophosphate. The uranium concentration was determined in the range of 0–40 ppb and detection limit of 0.2 ppb. The optimum time discrimination is obtained when the uranyl ion is complexed with sodium pyrophosphate. Need of preconcentration step or separation of uranium from interfering elements is not an essential step.

Restricted access

Zinc is essentially required for crop growth and its insufficient supply to the plants may severely limit the yield traits of a crop. A field experiment was performed during rabi season of 2009–10 and 2010–11 to evaluate the performance of different wheat genotypes under different levels of zinc namely 0 kg ZnSO4 ha−1, 20 kg ZnSO4 ha−1 and 20 kg ZnSO4 ha−1 along with foliar spray of 0.5% solution of ZnSO4. Genotypes responded positively in terms of tiller number, grain and biological yield, spikelet length, spikelet number, grain number and thousandgrain weight. The best response was observed with the application of 20 kg ZnSO4 ha−1 along with foliar spray of 0.5% solution of ZnSO4. Zinc application brought about a maximum increase of 58.6% in tiller number, 63.7% in thousand-grain weight, 40.5% in biological yield, 66.1% in grain yield irrespective of genotypes and the year of study. Wheat genotypes exhibited a variation in their performance which has been exploited in this study. Genotypes UP-262, PBW-175, PBW-343 were found to be superior for one or the other yield contributing factors.

Restricted access

Yellow mosaic and leaf curling symptoms were observed on Ageratum conyzoides plants in a survey made during 2007–09 at Gorakhpur and nearby locations of North-Eastern Uttar Pradesh, India. The incident of disease was significantly high with severe symptoms. Due to presence of whiteflies in the field, begomovirus infection was suspected. Therefore, polymerase chain reaction (PCR) was performed with begomovirus specific primers (TLCV-CP). Total genomic DNA was isolated from infected as well as healthy leaf samples. In gel electrophoresis an ∼800 bp amplicon was obtained in diseased leaf samples as expected, while no amplicon was found in healthy plants.Amplicons obtained were directly sequenced and submitted to the GenBank with the accession number GQ412352 and a phylogeny tree was constructed with the available sequences in the Genbank. Based on the highest nucleotide similarity (98%), amino acid similarity and close relationship with isolates of Ageratum enation virus, the present isolate was considered as an isolate of Ageratum enation virus.

Restricted access
Cereal Research Communications
Authors:
N. Jain
,
G.P. Singh
,
R. Yadav
,
R. Pandey
,
P. Ramya
,
M.B. Shine
,
V.C. Pandey
,
N. Rai
,
J. Jha
, and
K.V. Prabhu

Under limiting water resources, root system response of genotypes to soil-water conditions with enhanced shoot biomass holds the key for development of improved genotypes. Based on the hypothesis of root biomass contribution to higher yields under limiting conditions which might be attributed to the root system plasticity of genotypes, a set of thirty-four genotypes were evaluated under three moisture regimes in a pot experiment for root system traits. Total root dry matter had a positive association with total shoot dry matter (0.35). The identified genotypes showed greater yields and higher stress tolerance index (STI) in an independent field experiment. Root dry matter positively correlated with stress tolerance index on grain yields in both the years. The total variation was partitioned into principal components and GGE biplots were studied to identify the best performing genotypes under the three environments for root dry biomass and related traits. HD2932 appeared to be the winner genotype under different regimes. These results might be helpful in identifying donors for moisture stress tolerance that can be utilized in wheat breeding programmes for accelerated development of varieties with improved root systems.

Restricted access
Journal of Radioanalytical and Nuclear Chemistry
Authors:
Satyabrata Mishra
,
Falix Lawrence
,
R. Sreenivasan
,
N. Pandey
,
C. Mallika
,
S. Koganti
, and
U. Kamachi Mudali

Abstract  

Removal of nitric acid from high level liquid wastes (HLLW) of nuclear fuel reprocessing plants is warranted for simplifying the procedure for waste fixing. Chemical denitration aims to reduce the waste volume by destroying the acidity and subsequent concentration by adding suitable reductants. Reduction of nitric acid to gaseous products is an attractive way to accomplish denitration. Nitric acid reduction with formaldehyde proceeds with the formation of CO2, NO2, NO or N2O depending on the reaction conditions and all the reaction products except water can be eliminated from the system in gaseous form. The HNO3–HCHO reaction is governed by a complex mechanism of exhibiting relatively long induction period, depending upon the temperature, concentration of reactants and nitrous acid reaction intermediate. In the present work, a homogeneous denitration process with formaldehyde which offers safety and is governed by controlled kinetics was demonstrated on a laboratory scale. The induction period before commencement of the reaction was eliminated by maintaining the reaction mixture at a pre determined temperature of 98 °C. Based on the results accrued from lab scale experiments, the equipment for pilot plant scale operation was designed, the reaction efficiency for continuous denitration was determined and the investigation of nitric acid destruction was extended to full-scale plant capacity. The role of organics in the waste in foaming up of the reaction mixture was also studied using a synthetic waste solution.

Restricted access