Search Results

You are looking at 1 - 3 of 3 items for

  • Author or Editor: N. Yordanov x
  • Refine by Access: All Content x
Clear All Modify Search

Abstract  

Alanine/EPR dosimeters are well established as secondary, reference dosimeters for high-energy radiation. However, there are various sources of uncertainty in the evaluation of absorbed dose. This arises primarily from the necessity to calibrate each EPR spectrometer and each batch of dosimeters before their use. In order to overcome this disadvantage, a new generation alanine/EPR dosimeter has been developed, and its possibilities as a radiation detector are reported. Principally, it is a mixture of alanine, some quantity of EPR active substance, and a binding material. The EPR active substance, acting as an internal EPR standard, is chosen to have EPR parameters which are independent of the irradiation dose. The simultaneous recording of the spectra of both the sample and the standard under the same experimental conditions and the estimation of the ratioI alanine/I Mn as a function of the absorbed dose strongly reduces the uncertainties. The response of these dosimeters for60Co γ-radiation exhibits excellent linearity and reproducibility in the range of absorbed dose, 102−5·104 Gy.

Restricted access

Abstract  

Some physico-technical parameters of the self-calibrated alanine/EPR dosimeters are described. Principally, this new type of solid state/EPR dosimeter contains radiation sensitive diamagnetic material (in the present case, alanine), some quantity of EPR active, but radiation insensitive, substance (for example, Mn2+/MgO) playing roles of an internal standard and a binding material. Thus with this dosimeter the EPR spectra of alanine and the internal standard Mn2+ are recorded simultaneously and the dose response is represented as a ratio of EPR signal intensities of alanine versus Mn2+ as a function of absorbed dose. As a result, the data of the present study have shown that there is practically no interference of the dosimeter EPR response (expressed as the ratio I alanine/I Mn) from the way of preparation (homogeneity), behavior after irradiation (fading of EPR signals with time, influence of different meteorological conditions) as well as specific spectrometer setting conditions. These dosimeters show satisfactory reproducibility of preparation and reading as well as stability on keeping. Thus, fulfilling the described physico-technical data of this type of dosimeters, the reproducibility of the readings is significantly improved particularly when intercomparison among different laboratories is performed. This conclusion is confirmed by independent studies of the described self-calibrated alanine/EPR dosimeters in several laboratories in Europe. Results of which are also reported.

Restricted access

Abstract  

EPR-spectroscopic properties (line-intensity,-width, andg-factors) of pyrolized at 550°C sucrose, MgO and MgO doped with Mn2+ ions (500∶1) remain unchanged after high-dose (1–100 kGy) irradiation, whereas CaO gives an EPR signal. These properties of these materials make it possible to use them as internal reference EPR standards in the work under conditions of strong ionisation environment, for precise determination of theG-values of other materials, for obtaining exact magnitudes of increase of the EPR response when the method of additional dose is applied, to follow the kinetics of decay of some radiation induced defects.

Restricted access