Search Results

You are looking at 1 - 2 of 2 items for

  • Author or Editor: Nil Toplan x
  • Refine by Access: All Content x
Clear All Modify Search

Abstract

The non-isothermal kinetics of mullite formation from both non-activated and mechanically activated kaolinite have been studied by differential thermal analysis (DTA). Kaolinite was mechanically activated in a planetary mill, while amorphization in the structure was studied by X-ray diffraction analysis. It was established that the mechanical activation especially affected the loss of structural water. The activation energies depending on the conversion for mullite formation have been calculated from the DTA curves by using the non-isothermal method of Coats and Redfern at heating rates of 5, 10, 15, and 20 °C min−1. The mechanical activation and amorphization of the kaolinite brings to the formation of mullite at a lower heating temperature.

Restricted access

Abstract

The non-isothermal kinetics of mullite formation from both non-activated and mechanically activated kaolinite + alumina ceramic system have been studied by differential thermal analysis (DTA). The mixture of kaolinite and alumina was activated mechanically in a planetary mill, while amorphization in the kaolinite and alumina structure was studied by X-ray diffraction analysis. The activation energies depending on the conversion for mullite formation have been calculated from the DTA curves by using the non-isothermal method of Coats and Redfern at heating rates of 5, 10, 15, and 20 °C min−1. The mechanical activation of the kaolinite and alumina mixture resulted in the decrease in activation energy values for mullite formation.

Restricted access