Search Results

You are looking at 1 - 5 of 5 items for

  • Author or Editor: P. Humke x
Clear All Modify Search

Abstract  

The purpose of this paper is to discuss a first-return integration process which yields the Lebesgue integral of a bounded measurable function f: IR defined on a compact interval I. The process itself, which has a Riemann flavor, uses the given function f and a sequence of partitions whose norms tend to 0. The “first-return” of a given sequence

\documentclass{aastex} \usepackage{amsbsy} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{bm} \usepackage{mathrsfs} \usepackage{pifont} \usepackage{stmaryrd} \usepackage{textcomp} \usepackage{upgreek} \usepackage{portland,xspace} \usepackage{amsmath,amsxtra} \usepackage{bbm} \pagestyle{empty} \DeclareMathSizes{10}{9}{7}{6} \begin{document} $$\bar x$$ \end{document}
is used to tag the intervals from the partitions. The main result of the paper is that under rather general circumstances this first return integration process yields the Lebesgue integral of the given function f for almost every sequence
\documentclass{aastex} \usepackage{amsbsy} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{bm} \usepackage{mathrsfs} \usepackage{pifont} \usepackage{stmaryrd} \usepackage{textcomp} \usepackage{upgreek} \usepackage{portland,xspace} \usepackage{amsmath,amsxtra} \usepackage{bbm} \pagestyle{empty} \DeclareMathSizes{10}{9}{7}{6} \begin{document} $$\bar x$$ \end{document}
.

Restricted access
Acta Mathematica Hungarica
Authors: C. L. Belna, M. J. Evans and P. D. Humke
Restricted access
Restricted access