Search Results

You are looking at 1 - 2 of 2 items for

  • Author or Editor: P. Moser x
  • Refine by Access: All Content x
Clear All Modify Search

This paper introduces a new hybrid ECG beat segmenting system, which can be applied in the processing unit of single-channel, long-term ECG monitors for the on-line segmentation of the ECG signal. Numerous ECG segmentation techniques are already existing and applied, however sufficiently robust and reliable methods currently require more than one ECG signal channel and quite complex computations, which are practically not feasible in stand-alone, low-cost monitors. Our new system approach presents a time domain segmentation technique based on a priori physiological and morphological information of the ECG beat. The segmentation is carried out after classifying the ECG beat, using the linear approximation of the filtered ECG signal and considering the pathophysiological properties as well. The proposed algorithms require moderate computational power, allowing the practical realization in battery powered stand-alone long-term cardiac monitors or small-sized cardiac defibrillators. The prototype version of the system was implemented in Matlab. The test and evaluation of the system was carried out with the help of reference signal databases.

Restricted access

Abstract  

Lifetime measurement in Positron Annihilation Spectroscopy (PAS) is applied to the study of free-volume collagen characteristics as a function of concentration. The lifetimes of positrons were measured by a conventional fast-fast coincidence system. All lifetime data are fitted in three components by using the computer program POSITRON-FIT and resolved. For each concentration, lifetime distributions were analyzed in order to obtain the different components, thus we have observed three components of which one long component τ3. This long lived component can be associated with a pick-off annihilation of ortho-positronium (o-Ps) trapped in free volumes of amorphous region. This investigation shows the potential of positron annihilation spectroscopy in the study of biopolymer microstructures.

Restricted access