Search Results

You are looking at 1 - 5 of 5 items for

  • Author or Editor: P. Mura x
  • Refine by Access: All Content x
Clear All Modify Search

Abstract  

An experimental mixture design was applied to a differential scanning calorimetry (DSC) study performed to evaluate naproxen compatibility in tablet formulations consisting of four classic excipients (sorbitol, sodium carboxymethylcellulose, poly(ethylene glycol) 20000 and Veegum) each in adequate concentration ranges accounting for the relevant values actually used in pharmaceutical formulations. Twenty-seven different tablets were obtained from as many mixtures prepared according to the experimental design plan and analyzed in a random order by DSC. Statistical evaluation of experimental data enabled correlation of both enthalpy and onset temperature variations of drug melting endotherm (selected as responses indicative of the presence of drug-excipient interactions) with the mixture composition. Variance analysis (Anova) confirmed the reliability of the postulated polynomial model in providing adequate prediction of true system behaviour.

Restricted access

Abstract  

Differential scanning calorimetry (DSC), supported by hot stage microscopy, IR spectroscopy and X-ray powder diffractometry, was used to investigate the characteristics of the solid phases of mefenamic, niflumic, and flufenamic acids and of paracetamol, before and after equilibration with saturated solutions in different solvents. Mixtures of Lewis base (dioxane and ethyl acetate) and amphiprotic solvents (ethanol and water) were prepared for evaluating the influence of both nature and polarity of the solvents. Solid-state analysis performed on the original samples (commercial products) made it possible to establish that paracetamol, mefenamic acid and flufenamic acid were in their respective Form I. No polymorphic modifications are known for niflumic acid. Paracetamol, niflumic and mefenamic acids did not show any change after equilibration with the various solvents or solvent mixtures, regardless of their different chemical nature. In contrast, DSC, IR and X-ray analyses revealed the partial recrystallization of flufenamic acid into its polymorphic Form III in solid phases at equilibrium with ethanol, ethyl acetate and their blends, as well as in dioxane-water mixtures containing 30 to 100% dioxane and in ethanol-water mixtures with a water content less than 50%.

Restricted access

Abstract  

Natural crystalline (α-, β-, γ-) and amorphous derivative (hydroxypropyl-β- and methyl-β) cyclodextrins were selected as potential carriers for obtaining, through a co-grinding technique, a stable activated amorphous form of glyburide with improved dissolution properties. Differential scanning calorimetry (DSC) was used to investigate solid-state modifications of the drug induced by co-grinding with the selected carriers in a high energy vibrational micro-mill. X-ray powder diffraction and FTIR spectroscopy were employed as additional techniques to support DSC data. Equimolar drug : cyclodextrin physical mixtures were co-ground for different times (up to 60 min) at constant vibration frequency (24 Hz). A progressive drug amorphization with increasing grinding time was observed in all binary systems, but, interestingly, different degrees of sensitivity to the mechanical-chemical activation were evident. In fact, blends with natural cyclodextrins, despite the initial higher crystallinity than those with the amorphous derivatives, required the same or shorter co-grinding times (60 min) to achieve complete drug amorphization. Stability studies indicated no appreciable drug recrystallization in co-ground products after 4 months storage in sealed containers at 25°C or 1 month at 25°C and 75% RH. No stability differences were detected between products with natural or derivative cyclodextrins. The results accounted for the suitability of cyclodextrin co-grinding technique to obtain and stabilize glyburide in the activated amorphous form.

Restricted access

Abstract  

The interactions of trimethoprim, sulphadiazine and sulphamethoxazole with natural (a- b-, g- ) and amorphous (RAMEB) or crystalline (DIMEB) methylated b-cyclodextrins were investigated both in aqueous solution (using phase-solubility analysis) and in the solid state (using DSC supported by X-ray analysis). In particular, DSC studies enabled determination of the relative degree of crystallinity of each drug in its physical and ground mixtures with the different cyclodextrins on the basis of the variation of its heat of fusion in comparison with that of the pure drug. In all cases, the host cavity size was a prevalent factor for the inclusion complexation in liquid state. On the contrary, it had a negligible effect on solid-state interactions in terms of drug amorphization. DIMEB and RAMEB exhibited similar performances in aqueous solution, showing that the presence of methyl-groups improved the complexing and solubilizing properties of b-cyclodextrin. However, DSC studies revealed that RAMEB was clearly more active in performing solid-state interactions, i.e. drug amorphization, and as stabilizing agent for the amorphous state brought forth.

Restricted access
Journal of Thermal Analysis and Calorimetry
Authors: A. Swiderski, A. Wojtal, P. Muras, A. Mikulko, S. Wrobel, and H. Koloczek

Abstract  

The DSC method was used to study phase transitions in Rhododendron L. leaf tissues caused by temperatures below the freezing point of water. The curves show several stages of water crystallisation, demonstrating that these processes do not occur simultaneously in various types of cell organelles. Temperatures and enthalpies of the phase transitions were determined and significant changes were found in the DSC curves when the sample was repeatedly subjected to sub-zero temperature cooling and heating. Also, frost resistance of the same rhododendron taxons was studied by conductometric analysis and the DSC results were compared with the data from other laboratory studies.

Restricted access