Search Results

You are looking at 1 - 10 of 13 items for

  • Author or Editor: P. Nogueira x
Clear All Modify Search

Abstract  

Mechanisms of formation of polyphosphates MeIII(PO3)3, where M III=La, Pr, Nd, Sm, Gd, Tb, Dy, Ho, Er, Tm, Yb, Lu, Y, Sc, Fe, Ga, Al and Cr has been simulated by thermal analysis technique. MeIII oxides and ammonium dibasic phosphate (NH4)2HPO4 were used as starting materials. For M III=La-Lu, Y and Fe three main stages were observed: 1. elimination of water and ammonia leading to the formation of ammonium tripolyphosphate (NH4)5P3O10; 2. reaction of the latter with Me2 IIIO3 and formation of acidic polyphosphates MeIIIH2P3O10 or their isomers MeIII(PO3)3·H2O; 3. final loss of water and formation of MeIII(PO3)3. For Me III=Sc and Ga the second stage is prolonged and the polyphosphates form at higher temperatures. Aluminum and chromium polyphosphates are unstable. It is suggested that thermal behavior of the compounds is determined by MeIII ionic radii.

Restricted access

Abstract  

Using dynamic mechanical analysis (DMA) we have studied the variation with the frequency of the dynamic mechanical properties (storages modulus,E'; loss modulus,E'' and loss tangent or tan σ) for a system containg a diglycidyl ether of bisphenol A (DGEBA) and 1,3-bisaminomethylcyclohexane (1,3-BAC). These properties were measured both in the glass transition and β transition regions. An increase in frequency caused a shift of tan σ peak positions in both regions toward higher temperature. Finally, we report the activation energies of a DGEBA/1,3-BAC expoxy system for α and β transitions.

Restricted access

Abstract

The thermal degradation of an amphiphilic block copolymer poly(ethylene)-b-poly(ethylene oxide)-carboxylic acid terminated (PE-b-80%PEO–CH2COOH) and its salt obtained as intermediary product from chemical oxidation of the end group of poly(ethylene)-b-poly(ethylene oxide) (PE-b-80%PEO) has been studied using a thermogravimetric mass spectrometry (TG/MS) coupled system. The isothermal fragmentation of PE-b-80%PEO–CH2COOH showed a more complex fragmentation pattern than PE-b-80%PEO owing to the simultaneous occurrence of the polyether block and the carboxylic end group fragmentations. This led to the appearance of four overlapping ion current peaks of fragments with m/z 44 and two peaks relative to m/z 18 at different times by acid-terminated copolymer. For the PE-b-80%PEO copolymer, two ion current peaks associated to m/z 44 and one large peak relative to m/z 18 fragments were detected. The intermediary product (PE-b-80%PEO–CH2COO K+) showed differences related to the fragmentation behavior. It has more defined ion current signals and presented characteristic peaks attributed to m/z 43 fragment at the very beginning of the thermal degradation process, which it not detected in the acid copolymer.

Restricted access

Abstract  

The physical aging of a system containing tetraglycidyl-4-4′-diaminodiphenylmethane (TGDDM), with a multifunctional novolac glycidyl ether resin hardened by 4,4′-diaminodiphenylsulphone (DDS) has been investigated by differential scanning calorimetry (DSC) and dynamic mechanical analysis (DMA). Samples fully cured were aged at temperatures between 200 and 250C, during periods of time from 1 to a maximum of 336 h. Furthermore, the dynamic mechanical relaxation behaviour annealed at temperature of 220C, was studied, aging during 24 and 168 h. The effect of the enthalpy relaxation during DSC heating scan is shown by the presence of an endothermic peak whose position and intensity depends on the aging conditions, both temperature and time. DSC studies suggest that enthalpy relaxation increases gradually with aging time to a limiting value for each temperature where structural equilibrium is reached. DMA results show that the effect of aging is to cause chain stiffening and a decrease in the height of the peak value of the loss factor.

Restricted access

Abstract  

Differential scanning calorimetry (DSC) was applied to study the cure kinetics of an epoxy system containing both tetraglycidyl 4,4′-diaminodiphenylmethane (TGDDM) and a multifunctional Novolac glycidyl ether resin, cured with 4,4′-diaminodiphenylsulfone (DDS). The experimental data were analyzed in terms of a mechanistic model proposed by Cole, which includes the etherification reaction. The kinetics can be completely described in terms of three rate constants, which obey the Arrhenius relationship. This model gives a good description of the cure kinetics up to the onset of vitrification. The effect of diffusion control was incorporated to describe the cure in the later stages. By combining the model and a diffusion factor, it was possible to predict the cure kinetics over the whole range of conversion, including an analysis of the evolution of different chemical species during the curing process. Good agreement with the experimental DSC data was achieved with this mechanistic model over the whole range of cure when the etherification reaction was assumed to be of first order with respect to the concentrations of epoxide groups, hydroxy groups, and the tertiary amine groups formed in the epoxide amine reaction.

Restricted access

Abstract  

A study of an epoxy-cycloaliphatic amine system has been realized using a thermogravimetric technique (TG). Isothermal and non-isothermal (dynamic) methods were employed to determine the kinetic data of this system. Five methods were used for determining the activation energies of this system in the dynamic heating experiments. In two of them (Flynn-Wall-Ozawa, and Kissinger) it is not necessary to have a prior knowledge of the reaction mechanism of the degradation behaviour for this system. In the other ones (Coats and Redfern, Horowitz and Metzger, and Van Krevelen et al.) it is necessary to know this reaction mechanism, besides Criado et al. method was used for determining it. The results have shown that good agreement between the activation energies obtained from all methods can be achieved if it is assumed that the degradation behaviour of this system is of sigmoidal-rate type.

Restricted access

The diffusive and dynamic mechanical behavior of the DGEBA/1,3-BAC epoxy resin system was studied during water absorption. The diffusion of water was investigated at 100% relative humidity, by immersion of specimens in water at 60, 80 and 100°C. In all absorption experiments, water diffusion followed Fick's law. Diffusion coefficients and saturated water concentrations are given for these temperatures. The activation energy for diffusion was determined from the relationship between the diffusion coefficient and the reciprocal of the absolute temperature. The value obtained was 31.2 kJ mol−1. Dynamic mechanical analysis of samples immersed in 100°C water and with various water contents showed both a shift of Tg, defined by thetanδ peak, to lower temperatures and a slight decrease in the dynamic modulus in the presence of water. These effects are probably a result of plasticization.

Restricted access

Dynamic mechanical analysis

Thermal degradation of a diglycidyl ether of bisphenol A and 1,3-bisaminomethylcyclohexane epoxy resin system

Journal of Thermal Analysis and Calorimetry
Authors: L. Barral, J. Cano, A. López, J. López, P. Nogueira and C. Ramírez

Abstract  

Using dynamic mechanical analysis (DMA) we have studied thermal degradation for a system containing a diglycidyl ether of bisphenol A (DGEBA) and 1,3-bisaminomethylcylohexane (1,3-BAC). The changes of dynamic mechanical properties during thermal degradation indicated a shift of the glass transition temperature (T g) to higher temperatures and a decrease in the peak value of the dynamic loss factor (tan δ) with an increasing of aging time. The value of dynamic storage modulus (E′) at the rubbery state showed an increase with aging time, whiteE′ at the glassy state only underwent a moderate change with increased thermal degradation. From these results it can be argued that thermal degradation during the stage prior to the onset of the severe degradation involves structural changes in the epoxy system, as further crosslinking and loss of dangling chains in the crosslinked network.

Restricted access