Search Results

You are looking at 1 - 10 of 10 items for

  • Author or Editor: P. Novák x
  • Refine by Access: All Content x
Clear All Modify Search

Determination of the gravimetric geoid is based on inversion of observed values of gravity into the disturbing gravity potential, i.e., the unknown potential is sought from discrete values of its vertical gradient. This transformation is often solved using boundary-value problems of the potential theory defined in terms of the Laplace differential equation and corresponding boundary conditions. However, this apparatus requires the potential function to be harmonic everywhere outside the boundary on which the unknown potential is solved for. For geoid determination, the boundary represents the geoid that is usually approximated for derivation of the solution by a geocentric sphere or reference ellipsoid. Since there are topographical and atmospheric masses outside the geoid, the potential function is not harmonic everywhere outside the geoid and the so-called reduction of the gravity potential and its functionals must be applied. This manuscript investigates the generalized method of Helmert’s condensation, namely its numerical implications for the standard procedure of geoid determination. An optimum location of the condensation layer is investigated from the point of relative smoothness of the gravity field and numerical difficulties with gravity inversion. The test area in the Canadian Rocky Mountains with a highly variable gravity field and topography is used for numerical investigations. Numerical results indicate that the condensation layer buried approximately 20–30 km inside the geoid gives the best results in terms of the gravity field smoothness as well as the complexity of gravity inversion. However, larger values of the primary indirect effect on the geoid for this depth of the condensed masses seem to overcome these numerical advantages.

Restricted access

Abstract  

The properties of a composite ion exchanger containing potassium nickel ferrocyanide incorporated in silica gel matrix are described. The sorbent was prepared in the form of spherical beads. For the characterisation of the ion exchanger X-ray diffraction, electron microscopy, IR and Mössbauer spectrometry were used. The sorbent was used for the sorption of radiocesium from model solutions as well as from radioactive waste solutions (NPP Jaslovské Bohunice, Slovakia).

Restricted access

Abstract  

Inorganic sorbents are often used in separation of metals and radionuclides in radioanalytical application and they were also used in technological scale for separation of radionuclides in cleanup of Three Mile Island NPP. Inorganic sorbents become popular in the last years because no problem with organic contamination, there are stable against radiation, sorption efficiency can be tailor made for selective separation of chosen metal. Contrary to the organic sorbents they have usually lower capacity and chemical stability is limited to narrower pH. Nevertheless of some problems, many good properties of inorganic sorbents make them very attractive for sorption study.

Restricted access

Abstract  

This paper studies the effect of molecular mass on the melting temperature, enthalpy and entropy of hydroxy-terminated poly(ethylene oxide) (PEO). It aims to correlate the thermal behaviour of PEO polymers and their variation of molecular mass (MW). Samples ranging from 1500 to 200,000 isothermally treated at 373 K during 10 min, were investigated using DSC and Hot Stage Microscopy (HSM). On the basis of DSC and HSM results, melting temperatures were determined, and melting enthalpies and entropies were calculated. Considering the melting temperatures, it was found that the maximum or critical value of MW was found around 4000, and then these remain almost constant. This behaviour was interpreted assuming that lower MW fractions (MW<4000) crystallize in the form of extended chains and higher MW fractions (MW>4000), as folded chains. The melting enthalpies showed a scattering effect at least up to MW 35,000. It was difficult to obtain any relationship between melting enthalpies in J g–1 and MW. These variations seem to be of statistical nature. Corrected enthalpy data on a molar basis (kJ mol–1) exhibited a linear relationship with MW. Considering the solid—liquid equilibrium, the melting entropies (in kJ mol–1) were calculated. These values were more negative as compared with molar enthalpy increases. It was explained because the changes in melting temperatures are much smaller than those observed in the enthalpy values. Linear relationship between enthalpies andentropies as a function of MW was deduced.

Restricted access
Journal of Thermal Analysis and Calorimetry
Authors: J. Bajdik, K. Pintye-Hódi, Cs. Novák, P. Szabó-Révész, G. Regdon, I. Erős, and G. Pokol

Abstract  

Dimenhydrinate is a heat-sensitive antihistamine with a low melting point. The heat-sensitive feature is of importance if direct compression is used. Direct measurement of the heat originating in the texture of tablets during compression is very difficult. Thermoanalytical methods were used as indirect methods to describe the changes in material properties at high temperature: differential scanning calorimetry, thermomicroscopy and thermogravimetric analysis. Film coating method is widely used in pharmaceutical technology. A fluidized bed apparatus was applied to coat the crystals. The coating film forming agent was hydroxy-propyl-methylcellulose (HPMC), which is a gastric-soluble polymer. Thermoanalytical measurements reveal that dimenhydrinate crystals are sensitive to heat. Film coating method does not alter the shape of the DSC curve of dimenhydrinate, but increases the melting point. The presence of a macromolecular film reduces the thermal conductivity, because it separates the particles.

Restricted access

Abstract  

The formation of crystalline inclusion complex of triamterene with β-cyclodextrin (β-CD) was studied, evaluating the thermal behaviour and dispersion state of this drug in different types of binary systems. Spray-drying and co-grinding (oscillating mill) mixtures of triameterene with β-CD were prepared in 1∶1 molar ratio. The changes of crystalline properties of original (untreated) triamterene, β-CD, and composites obtained by co-grinding and spray-drying were investigated in comparison with those produced in simple physical mixtures. The thermal behaviour of the different samples was investigated using DTA. X-ray diffraction was applied as a complementary technique. The results have been explained by formation of amorphous drug particles on spray-drying samples and co-grinding or alternatively by means of a solid dispersion formation or a combination of these two. A contamination effect by grinding media was also observed as increasing grinding time.

Restricted access
Journal of Thermal Analysis and Calorimetry
Authors: J. M. Ginés, M. J. Arias, J. R. Moyano, Cs. Novak, G. Pokol, and P. J. Sánchez-Soto

A thermal study using DSC and Hot Stage Microscopy (HSM) was carried out to investigate the interaction in solid state of the binary system PEG 4000 — oxazepam, and to establish their phase diagram. The eutectic composition, which melting occurs at lower temperature as compared with the pure components, has been determined. The results obtained by DSC and HSM have indicated that PEG 4000 — oxazepam mixtures displays no obvious incompatibilities, and that the system shows a typical eutectic behaviour. However because of the closeness of the melting of PEG 4000 to the eutectic temperature, it was difficult to determine precisely the eutectic composition and temperature on the basis of DSC measurements alone. The use of heats of fusion corresponding to physical mixtures allowed an estimation of the eutectic composition at 6% w/w oxazepam. Additional information of temperature (57.6‡C) and composition (5–10% w/w oxazepam) of the eutectic was obtained by HSM using the contact method. This low melting temperature in this range of compositions offers advantages in terms of drug stability and easy manufacture.

Restricted access

In the present study, the effect of the molecular weight and thermal treatments on commercial polyethylene glycols (PEG) samples used in the pharmaceutical processing technology, has been analyzed using DSC and HSM. The molecular weight of these polymers range from 1500 to 200000. Thermal investigations on the melting behavior of original PEG samples (as received from the manufacturer) showed only one single melting DSC endotherm effect before 373 K. This fact was associated to the presence of only one type of polymeric chain. Using standard conditions, PEG samples were solidified from the melt at 373 K, either by flash cooling (using liquid nitrogen and an ice bath) and by slow cooling, soaked and by slow cooling at room temperature. They were further studied by DSC. It was found that after cooling, PEG with molecular weight 1500 and 15000 showed DSC thermograms with a single endothermic peak. However, thermograms for PEG 4000 and 6000 produced a splitted melting endotherm. This fact was attributed to the presence of two types of chains, that are the folded and extended chains.

Restricted access
Acta Physiologica Hungarica
Authors: Cs Csobay-Novák, P. Sótonyi, M. Krepuska, E. Zima, N. Szilágyi, Sz Tóth, Z. Szeberin, Gy Acsády, B. Merkely, and Kornélia Tekes

Foregoing researches made on the N/OFQ system brought up a possible role for this system in cardiovascular regulation. In this study we examined how N/OFQ levels of the blood plasma changed in acute cardiovascular diseases. Three cardiac patient groups were created: enzyme positive acute coronary syndrome (EPACS, n = 10), enzyme negative ACS (ENACS, n = 7) and ischemic heart disease (IHD, n = 11). We compared the patients to healthy control subjects (n = 31). We found significantly lower N/OFQ levels in the EPACS [6.86 (6.21–7.38) pg/ml], ENACS [6.97 (6.87–7.01) pg/ml and IHD groups [7.58 (7.23–8.20) pg/ml] compared to the control group [8.86 (7.27–9.83) pg/ml]. A significant correlation was detected between N/OFQ and white blood cell count (WBC), platelet count (PLT), creatine kinase (CK), glutamate oxaloacetate transaminase (GOT) and cholesterol levels in the EPACS group.Decreased plasma N/OFQ is closely associated with the presence of acute cardiovascular disease, and the severity of symptoms has a significant negative correlation with the N/OFQ levels. We believe that the rate of N/OFQ depression is in association with the level of ischemic stress and the following inflammatory response. Further investigations are needed to clarify the relevance and elucidate the exact effects of the ischemic stress on the N/OFQ system.

Restricted access
Acta Geodaetica et Geophysica Hungarica
Authors: A. Ádám, P. Bencze, J. Bór, B. Heilig, Á. Kis, A. Koppán, K. Kovács, I. Lemperger, F. Märcz, D. Martini, A. Novák, G. Sátori, S. Szalai, L. Szarka, J. Verő, V. Wesztergom, and B. Zieger

The paper describes research in geomagnetism and aeronomy carried out in the framework of a project organized by the Geodetic and Geophysical Research Institute of the Hungarian Academy of Sciences. It includes the development of the instrumentation of the Nagycenk Geophysical Observatory (geomagnetic measuring systems, ionosonde), moreover other instrumental and methodological developments, too. Observatory data are available in a database. Based on results of the Nagycenk and Tihany observatories and on data of permanent and temporal networks, long-term trends of different electromagnetic parameters were investigated. Thus geomagnetic activity was found secularly increasing, a decrease of the atmospheric electric potential gradient and a 11-year modulation of the winter/December attenuation of the geomagnetic pulsation activity were confirmed. Several possibilities (pulsations, whistlers, modelling) were used to improve knowledge about structure and parameters of the magnetosphere. Electromagnetic precursors of earthquakes were looked for. A significant increase of understanding was obtained in connection with Schumann resonances and electromagnetic transients caused by lightning. It was shown that see-coasts influence characteristically changes in ionospheric trends ( h m F2). When looking for the effect of the global climate changes in the subsurface electric resistivity, an example was discovered for the decrease of the resistivity due to infiltrating water from precipitation. Electromagnetic exploration of tectonically conditioned weak zones was continued, too.

Restricted access