Search Results
You are looking at 1 - 1 of 1 items for
- Author or Editor: P. Schroth x
- Refine by Access: All Content x
Periodica Mathematica Hungarica
Author:
P. Schroth
The system of functional equations
\documentclass{aastex}
\usepackage{amsbsy}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{bm}
\usepackage{mathrsfs}
\usepackage{pifont}
\usepackage{stmaryrd}
\usepackage{textcomp}
\usepackage{upgreek}
\usepackage{portland,xspace}
\usepackage{amsmath,amsxtra}
\pagestyle{empty}
\DeclareMathSizes{10}{9}{7}{6}
\begin{document}
$$\forall p\varepsilon N_ + \forall (x,y)\varepsilon D:f(x,y) = \frac{1}{p}\sum\limits_{k = 0}^{p - 1} {f(x + ky,py)}$$
\end{document}
is suited to characterize the functions
\documentclass{aastex}
\usepackage{amsbsy}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{bm}
\usepackage{mathrsfs}
\usepackage{pifont}
\usepackage{stmaryrd}
\usepackage{textcomp}
\usepackage{upgreek}
\usepackage{portland,xspace}
\usepackage{amsmath,amsxtra}
\pagestyle{empty}
\DeclareMathSizes{10}{9}{7}{6}
\begin{document}
$$(x,y) \mapsto y^m B_m \left( {\frac{x}{y}} \right),m\varepsilon N,$$
\end{document}
B
m
means them-th Bernoulli-polynomial,
\documentclass{aastex}
\usepackage{amsbsy}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{bm}
\usepackage{mathrsfs}
\usepackage{pifont}
\usepackage{stmaryrd}
\usepackage{textcomp}
\usepackage{upgreek}
\usepackage{portland,xspace}
\usepackage{amsmath,amsxtra}
\pagestyle{empty}
\DeclareMathSizes{10}{9}{7}{6}
\begin{document}
$$(x,y) \mapsto \exp (x)y(\exp (y) - 1)^{ - 1}$$
\end{document}
(for these functionsD =R ×R
+) and
\documentclass{aastex}
\usepackage{amsbsy}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{bm}
\usepackage{mathrsfs}
\usepackage{pifont}
\usepackage{stmaryrd}
\usepackage{textcomp}
\usepackage{upgreek}
\usepackage{portland,xspace}
\usepackage{amsmath,amsxtra}
\pagestyle{empty}
\DeclareMathSizes{10}{9}{7}{6}
\begin{document}
$$(x,y) \mapsto \log y + \Psi \left( {\frac{x}{y}} \right)(D = R_ + \times R_ + )$$
\end{document}
as those continuous solutions of this system which allow a certain separation of variables and take on some prescribed function values.