Search Results

You are looking at 1 - 3 of 3 items for

  • Author or Editor: P. Wani x
Clear All Modify Search
Restricted access

An extruded product was made based on oats and dried green pea using central composite rotatable design. Effects of incorporation level of oat flour (OF, 15.86 to 44.14%) and dried green pea flour (DGPF, 7.93 to 22.07%) on the physical and functional characteristics of extruded products based on composite flour were studied using response surface methodology. Second order polynomial equation was used to describe the effect of OF and DGPF on lateral expansion (LE), bulk density (BD), water solubility index (WSI), water absorption index (WAI), and hardness (HD). Results indicated that OF had negative effect on LE, while positive effect on BD, WSI, WAI, and HD. On increasing DGPF, LE and WSI increased, but it had negative effect on BD, WAI, and HD. Numerical optimization resulted in 41.91% OF and 7.93% DGPF to produce acceptable extrudates. The results suggest that oats and dried green pea flour can be extruded with rice flour and corn flour into an acceptable snack food.

Restricted access

A total of 32 bacterial isolates including Mesorhizobium (N=10), Azotobacter (N=12) and phosphate-solubilizing bacteria (N=10) were isolated and tested for siderophore, HCN, ammonia, indole acetic acid production and phosphate solubilization in vitro . The bacterial cultures were positive for siderophore, HCN and ammonia. Among the isolates, M. ciceri RC3 and A. chrococcum A4 displayed 35 and 14 μg ml −1 of IAA, respectively, whereas Bacillus produced 19 ( Bacillus PSB1) and 17 μg ml −1 ( Bacillus PSB10) of IAA in Luria Bertani broth. The diameter of the P solubilization zone varied between 4 ( Bacillus PSB1) and 5 mm ( Bacillus PSB10) and a considerable amount of tricalcium phosphate (7 and 8 μg ml −1 by Bacillus PSB1 and Bacillus PSB10, respectively) was released in liquid medium, with a concomitant drop in pH. The effects of N 2 -fixing and PS bacteria on the growth, chlorophyll content, seed yield, grain protein and N uptake of chickpea plants in field trials varied considerably between the treatments. Nodule number and biomass were significantly greater at 90 days after sowing (DAS), decreasing by 145 DAS. Seed yield increased by 250% due to inoculation with M. ciceri RC3 + A. chroococcum A4 + Bacillus PSB10, relative to the control treatment. Grain protein content ranged from 180 ( Bacillus PSB1) to 309 ng g −1 ( M. ciceri RC3 + A. chroococcum A4 + Bacillus PSB10) in inoculated chickpea. The N contents in roots and shoots differed considerably among the treatments.

Restricted access