Search Results

You are looking at 1 - 10 of 38 items for

  • Author or Editor: Ping Wang x
  • Refine by Access: All Content x
Clear All Modify Search

Abstract  

β-MCM41 composite molecular sieves were hydrothermally synthesized using NaOH treated β zeolite as precursors, and Pt/β-MCM41 bifunctional catalysts were prepared by impregnation. Hβ, desilicated Hβ by NaOH treatment (Dβ), and the physical mixture of Hβ and MCM41 (β+MCM41) were also used as control supports for bifunctional catalysts. All the catalysts were characterized by ICP, XRD, BET, nitrogen adsorption–desorption isotherm and NH3-TPD, and evaluated in the hydroisomerization of n-heptane using an atmospheric fixed bed flow reactor. Dβ, β+MCM41, or β-MCM41 supported Pt catalysts showed higher selectivity to isoheptanes than the counterpart Pt/Hβ did due to the presence of mesopores in addition to the zeolite micropores. Moreover, Pt/β-MCM41 was demonstrated to be a much more selective catalyst among them because the connection between mesopores and micropores accelerated the diffusion of larger molecules of isoheptanes. Under optimal conditions, Pt/β-MCM41 provided a very high selectivity to isomerization of 96.5%, coupled with a considerable high conversion of n-heptane of 56.0%.

Restricted access

A new horizontal sandwich chamberis described in this paper. Mobile phase can be applied to any part of the plate by use of this chamber. This has enabled a new mode of development in TLC, in which the starting position of development can be anywhere instead of at the origin; we therefore call this new mode ‘half-way development’. Compared with traditional development, the new mode can be used to develop any separated spot again. Many other modes of development can also be performed with this chamber, for example relay development on an over-length plate, programmed multiple development, gradient development, band application, concentration, and micropreparative separation. These methods are simple and convenient and give good results.

Mixtures of dyes have been used to verify above supposition with the above-mentioned methods. The results obtained are satisfactory.

Restricted access

Abstract  

To simplify TRPO process, a novel ligand, N,N’-dimethyl-3-oxa-glutaramic acid (DMOGA), was synthesized and used for stripping of An(III, IV) from 30% TRPO-kerosene. The distribution ratios for transuranium elements, including Np(IV), Pu(IV), Am(III), and some fission products, including Eu(III), Fe and Zr between 30% TRPO-kerosene and various HNO3-DMOGA solutions were measured. An(III, IV) and Ln(III) extracted to TRPO from simulated high level liquid waste could be recovered with an efficiency of 99.9% above in one stream with a 3-stage crosscurrent strip experiment with 0.2M DMOGA in HNO3 solution. Using this new agent, the back extraction of TRU elements from loaded TRPO phase becomes more simple and practical. Therefore, the original TRPO process could be simplified.

Restricted access

Abstract  

Alkaline earth metal (Mg, Ca, Sr and Ba) ions were exchanged into Hβ zeolite, which were used as the supports to load the noble metal Pt to prepare bifunctional catalysts for hydroisomerization of n-heptane. The catalysts were characterized by ICP, XRD, BET, NH3-TPD, H2-TPR and H2-chemisorption techniques, and evaluated in an atmospheric fixed bed reactor. The catalysts promoted by the alkaline earth metals are revealed to present much higher selectivity to isomerization than the counterpart Pt/Hβ. Moreover, the Ba-bearing catalyst loaded with 0.4 wt% Pt and 5:1 molar ratio of Ba to Pt gives a very high selectivity to iso-heptanes 95.4% with a considerable high conversion of n-heptane 61.7%. The promotion effect of alkaline earth metals is briefly discussed in relation to characterization data.

Restricted access

Abstract  

Uranyl luminescences in phosphoric acid system has been studied. Uranyl excited by a nitrogen laser shows single or biexponential luminescence decays in the phosphoric acid system. When the uranyl ion or phosphoric acid concentration are lower, a single exponential luminescence decay appears, whereas at higher uranyl ion or phosphoric acid concentrations, biexponential decay is observed. Time-resolved spectra of uranyl in this system are measured. The reasons of the phenomena are tentatively established.

Restricted access

Abstract  

Effects of pH, Eu(III) concentration, ionic strength, temperature and humic acid (HA) on Eu(III) sorption to iron oxides were investigated in detail. The sorption of Eu(III) to iron oxides was significantly dependent on pH and weakly dependent on ionic strength, and higher temperature was gainful to Eu(III) sorption. In the presence of HA, Eu(III) sorption was enhanced significantly at low pH; whilst obvious negative effect was observed in higher pH range. Below 12 mg/L HA, HA could obviously enhanced Eu(III) sorption to iron oxides, nevertheless Eu(III) sorption decreased steeply with increasing HA while HA exceeded 12 mg/L. The results were helpful for understanding radionuclides behaviors in natural environment.

Restricted access

Abstract

The influence of the activation conditions on the catalytic performance and microstructure of supported V–Mo oxides used for benzene oxidation to maleic anhydride has been investigated. To activate the catalysts, two sets of activation conditions were tested. In condition I, the catalysts were activated in an atmosphere of air and benzene, which was similar to the industrial practice. In condition II, the catalysts were pre-activated in an atmosphere consisting of the gas products produced by the decomposition of the freshly prepared catalysts during activation process. The activity and selectivity of the catalysts were evaluated on a bench scale reactor as well as on a pilot reactor. The catalysts activated by condition II at the appropriate temperature showed a better performance: the selectivity and yield of MA were nearly 80 and 100 wt%, respectively. They are 5 % higher than those of the catalyst activated by condition I. The catalysts were characterized in terms of several techniques including isotherm adsorption, TG-DTG, XRD, SEM, EDX and XPS. The characterization results indicated that the microstructures of the catalysts were significantly influenced by the activation conditions. Based on the above information, the better performance exhibited by the catalyst activated by condition II are analyzed.

Restricted access

Abstract  

Using a LKB-2277 bioactivity monitor, stop-flow mode, the power–time curves of Candida albicans growth at 37 °C affected by berberine were measured. The check experiments were studied based on agar cup method to observe the inhibitory diameter and serial dilution method to determine the minimal inhibitory concentration (MIC) of berberine on C. albicans growth. By analyzing the quantitative thermogenic parameters taken from the power–time curves using correspondence analysis (CA), we could find that berberine at a low concentration (5.0 μg mL−1) began to inhibit the growth of C. albicans and at a high concentration (75.0 μg mL−1) completely inhibited C. albicans growth. The anti-fungal activity of berberine could also be expressed as half-inhibitory concentration IC50, i.e., 50% effective in this inhibition. The value of IC50 of berberine on C. albicans was 34.52 μg mL−1. The inhibitory diameters all exceeded 10 mm in test range and the MIC was 500 μg mL−1. Berberine had strong anti-fungal effect on C. albicans growth. This work provided an important idea of the combination of microcalorimetry and CA for the study on anti-fungal effect of berberine and other compounds. Compared with the agar cup method and serial dilution method, microcalorimetry not only offered a useful way for evaluating the bioactivity of drugs, but also provides more information about the microbial growth and all this information was significant for the synthesis and searching of antibiotics.

Restricted access

Phosphatidate phosphatase-1 (PAP1) enzymes (yeast Pah1p/Smp2p, mammalian lipin1-3) have a key role in lipid homeostasis by controlling the relative proportions of its substrate phosphatidate (PA) and its product diacylglycerol (DAG). Recent investigation shows that mammalian lipin-1 complements phenotypes exhibited by yeast pah1Δ mutant cells, which indicates the functions of PAP1 enzymes are evolutionarily conserved. The observation was confirmed after transformation of human LPIN1 into PAH1-defective yeast, which resulted in human LPIN1-induced accumulation of triacylglycerol (TAG )and lipid droplet formation. In double mutants lacking Tgl3p and Tgl4p, overexpression of PAH1 or LPIN1 induced TAG accumulation and excessive obesity. Furthermore, the obese yeast was used as a model to study the anti-obesity effects of PAP1 activity inhibitors, including propranolol and clenbuterol. The data showed that the inhibitors significantly suppressed TAG accumulation and lipid droplets formation. These findings demonstrate that LPIN1 plays a functional role in lipid synthesis and storage, a role which is highly conserved from human to yeast. Inhibition of TAG synthesis will become an efficacious treatment strategy for obesity and our excessive obesity model will provide a very useful tool for discovery of new anti-obesity drugs in the future.

Restricted access