Search Results

You are looking at 1 - 10 of 12 items for

  • Author or Editor: Q. Guo x
  • All content x
Clear All Modify Search

Abstract  

The nano-iron oxyhydroxides (α- and γ-FeOOH) were synthesized by using three ferrous and ferric salts (FeSO4, FeCl2, Fe(NO3)3) as iron precursors under alkaline conditions. Morphologies of nano-iron oxyhydroxides were characterized by employing X-ray powder diffraction (XRD) and specific surface area (SSA) analysis respectively. The occurrence of needle-like shape of nano-goethite and rod-like shape of nano-lepidocrocite were attributed to hydrolysis of Fe3+ cations and/or oxidization of Fe2+ at alkaline conditions in terms of XRD analysis. The N2-BET SSA and BJH (Barrett–Joyner–Halenda) pore size analysis showed that internal SSA of nano-lepidocrocite is higher than that of nano-goethite, although they have similar N2-BET SSAs. The distribution of average pore size of nano-iron oxyhydroxides are higher than that of predominant pore size due to formation of the heterogeneous nanoparticles under the experimental conditions. These nanoparticles possess the high sorption capacity and the strong affinity for contaminants. Application of nano-iron oxyhydroxides in environmental engineering plays an important role to remove a variety of contaminants, such as heavy-metal ions and organic pollutants.

Restricted access

Leaf senescence is a notably important trait that limits the yield and biomass accumulation of agronomic crops. Therefore, determining the chromosomal position of the expression sequence tags (ESTs) that are associated with leaf senescence is notably interesting in the manipulation of leaf senescence for crop improvement. A total of 32 ESTs that were previously identified during the delaying leaf senescence stage in the stay-green wheat cultivar CN17 were mapped to 42 chromosomes, a chloroplast, a mitochondrion, and a ribosome using in silico mapping. Then, we developed 19 pairs of primers based on these sequences and used them to determine the polymorphisms between the stay-green cultivars (CN12, CN17, and CN18) and the control cultivar MY11. Among the 19 pairs of primers, 5 pairs produced polymorphisms between the stay-green cultivar and the non-stay-green control. Further studies of Chinese Spring nullisomic-tetrasomics show that JK738991 is mapped to 3B, JK738983 is mapped to 5D, and JK738989 is mapped to 2A, 4A, and 3D. The other two ESTs, JK738994 and JK739003, were not assigned to a chromosome using the Chinese Spring nullisomic-tetrasomics, which indicates that these ESTs may be derived from rye DNA in the wide cross. In particular, the ESTs that produce polymorphisms are notably useful in identifying the stay-green cultivar using molecular marker-assisted selection. The results also suggest that the in silico mapping data, even from a comparison genomic analysis based on the homogeneous comparison, are useful at some points, but the data were not always reliable, which requires further investigation using experimental methods.

Restricted access

Abstract  

The extraction of europium to a W/O microemulsion with an anionic surfactant was studied. In the sodium oleate (NaOL)/pentanol/heptane/NaCl system, the influence of aqueous-microemulsion ratio, concentration of NaOL, extraction temperature, concentration of cosurfactant, pH and salting-out agent on the extraction yield were investigated. Europium was probably extracted into the microemulsion phase in the form of Eu(OL)2Cl, and the extraction yield (E%) was above 99% when R = 8. The enthalpy and entropy of Eu(III) extraction were calculated to be −12.18 kJ/mol and −61.41 J/(mol K), respectively. The back-extraction is conducted by hydrochloric acid (0.8 mol/L), which provided better back-extraction yields (95.15%).

Restricted access

Soil seed banks can act as an important source in forest regeneration, and the information on the seed bank composition is vital for determining the resilience of plant communities under severe environments such as urban settings. In this study, we examined the seed bank density and functional composition, and their relationships with aboveground vegetation in three remnant evergreen broad-leaved forests, i.e., PuGang (PG), LuoGang (LG), and DaLingShan (DLS) under urbanization in Guangzhou, South China. In both years of our study (2010–2011), seed density and species richness for overall soil seed banks and each classified life forms (tree, shrub, herb and grass) significantly differed among the forests and were much higher in the PG forest. The prevailing life forms in the seed banks were herbs and grasses, and the proportion of tree species Importance Value index (IV) of the seed banks was low. We did not detect significant difference in the percentage of exotic species seeds in the seed banks among the forests. The proportion of species with animal dispersal mode was much higher in the DLS forest than in the PG and LG forests. The similarity in species composition between standing vegetation and seed banks was low with the lower value in the DLS forest than in PG and LG forest. Our findings suggest that the regeneration potential of the soil seed banks is limited for the remnant forests in urban areas. Therefore, greater proactive and enhanced conservation efforts are thus needed.

Restricted access

Abstract  

The solid-state coordination reactions of lanthanum chloride with alanine and glycine, and lanthanum nitrate with alanine have been studied by classical solution calorimetry. The molar dissolution enthalpies of the reactants and the products in 2 mol L-1 HCl solvent of these three solid-solid coordination reactions have been measured using an isoperibol calorimeter. From the results and other auxiliary quantities, the standard molar formation enthalpies have been determined to be Δf H m θ[La(Ala)3Cl33H2O(s), 298.2 K]= -3716.3 kJ mol-1, Δf H m θ [La(Gly)3Cl35H2O(s), 298.2 K]= -4223.0 kJ mol-1 and Δf H m θ [La(Ala)4(NO3)3H2O(s), 298.2 K]= -3867.57 kJ mol-1, respectively.

Restricted access

The present study was performed to investigate the effect of β-aminobutyric acid (BABA) treatment on defence activation in grape berries and to analyse its cellular mechanism. The results implied that BABA treatment at an effective concentration of 20 mM significantly inhibited gray mould rot caused by Botrytis cinerea in grape berries by inducing resistance. Accordingly, 20 mM BABA triggered a priming defence in grape suspension cells, since only the BABA-treated cells exhibited an accelerated ability for augmenting defence responses upon the pathogen inoculation. The primed cellular reactions were related to an early H2O2 burst, prompt accumulation of stilbene phytoalexins and activation of PR genes. Thus, we assume that 20 mM BABA can induce resistance to B. cinerea infection in intact grape berries perhaps via intercellular priming defence. Moreover, the BABA-induced priming defence is verified, because no negative effects on cell growth, anthocyanin synthesis, and quality impairment in either grape cells or intact berries were observed under low pathogenic pressure.

Restricted access

Male sterile mutants play an important role in the utilisation of crop heterosis. Male sterile plants were found in S5 generations of maize hybrid ZH2, through continuous sib-mating by using the fertile plants in the same population, we obtained a male sterile sibling population K932MS including sterile plants K932S and a fertile plant K932F. The objective of this study was to clarify the genetic characterisation and abortion characteristics by nucleus and cytoplasm effect analyses, cytoplasm grouping, and cytological observation. The results showed that no difference was found between K932S and K932F in the vegetative growth stage, but K932S had no emerging anther or pollen grains. The segregation ratio of fertile plants to sterile plants was 1:1 in the sibling progenies, while it was 3:1 in self-crossing progenies of K932F. The sterility of K932S could be restored among reciprocal progenies when seven normal inbred lines were used as females respectively. The fertility expression of K932S crossed with 30 testers would be changed in different test-crosses and some backcross progenies. The C-type restorer Zifeng-1 (Rf4Rf4) was able to restore the fertility of K932S, and the specific PCR amplification bands of K932MS were consistent with CMSCMo17. The anther of K932S began abortion at dyad with its tapetum expanded radically and vacuolated: this induced abnormality in the shapes of both dyads and tetrads. The microspore could not develop normally, and then it collapsed and gradually disappeared. Hence, K932MS is a C-type cytoplasmic male sterile mutant with a pollen-free, stable inheritance: it has potential application value for further research.

Restricted access

A method was developed for the preparative separation of two alkaloids from the crude extract of the radix of Rauvolfia verticillata (Lour.) Baill. in a single run. The two-phase solvent system composed of petroleum ether–ethyl acetate–methanol–water (5:5:2:8, v/v), where triethylamine (40 mmol/L) was added to the upper organic phase as the stationary phase and hydrochloric acid (10 mmol/L) was added to the lower aqueous phase as the mobile phase, was selected for this separation by pH-zone-refining counter-current chromatography (PZRCCC). For the preparative separation, the apparatus was rotated at a speed 850 rpm, while the mobile phase was pumped into the column at 2 mL/min. As a result, 112 mg of reserpine and 21 mg of yohimbine were obtained from 3 g of crude extract in a single run. The analysis of the isolated compounds was determined by high-performance liquid chromatography (HPLC) at 230 nm with purities of over 91.0%, and the chemical identification was carried out by the data of electrospray ionization–mass spectrometry (ESI–MS) and nuclear magnetic resonance (NMR) spectroscopy. The technique introduced in this paper is an efficient method for preparative separation of reserpine and yohimbine from devil pepper radix. It will be beneficial to utilize medicinal materials and also useful for the separation, purification, and pharmacological study of Chinese herbal ingredients.

Open access

Iron deficiency is the most common nutritional disorder, affecting over 30% of the world’s human population. The primary method used to alleviate this problem is nutrient biofortification of crops so as to improve the iron content and its availability in food sources. The over-expression of ferritin is an effective method to increase iron concentration in transgenic crops. For the research reported herein, sickle alfalfa (Medicago falcata L.) ferritin was transformed into wheat driven by the seed-storage protein glutelin GluB-1 gene promoter. The integration of ferritin into the wheat was assessed by PCR, RT-PCR and Western blotting. The concentration of certain minerals in the transgenic wheat grain was determined by inductively coupled plasma-atomic emission spectrometry, the results showed that grain Fe and Zn concentration of transgenic wheat increased by 73% and 44% compared to nontransformed wheat, respectively. However, grain Cu and Cd concentration of transgenic wheat grain decreased significantly in comparison with non-transformed wheat. The results suggest that the over-expression of sickle alfalfa ferritin, controlled by the seed-storage protein glutelin GluB-1 gene promoter, increases the grain Fe and Zn concentration, but also affects the homeostasis of other minerals in transgenic wheat grain.

Restricted access

High-yield common buckwheat ‘cv. Fengtian 1’ (FT1) and tartary buckwheat ‘cv. Jingqiao 2’ (JQ2) were selected to investigate the characteristics of the grain-filling process and starch accumulation of high-yield buckwheat. FT1 had an average yield that was 43.0% higher than that of the control ‘cv. Tongliaobendixiaoli’ (TLBDXL) in two growing seasons, while JQ2 had an average yield that was 27.3% higher than that of the control ‘cv. Chuanqiao 2’ (CQ2). The Richards equation was utilized to evaluate the grain-filling process of buckwheat. Both FT1 and JQ2 showed higher values of initial growth power and final grain weight and longer linear increase phase, compared with respective control. These values suggest that the higher initial increasing rate and the longer active growth period during grain filling play important roles to increase buckwheat yield. Similar patterns of starch, amylose and amylopectin accumulation were detected in common buckwheat, leading to similar concentration of each constituent at maturity in FT1 and TLBDXL. Tartary buckwheat showed an increasing accumulation pattern of amylose in developing seeds, which differed from that of starch and amylopectin. This pattern led to a significant difference of the concentrations of amylose and amylopectin at maturity between JQ2 and CQ2, the mechanisms of which remained unclear. Nevertheless, both FT1 and JQ2 showed increased starch, amylose, and amylopectin accumulation during the physiological maturity of grains. The results suggest that prolonging the active grain-filling period to increase carbohydrate partitioning from source to seed sink can be an effective strategy to improve buckwheat yield.

Restricted access