Search Results

You are looking at 1 - 10 of 10 items for

  • Author or Editor: Qing Zhu x
Clear All Modify Search

Abstract

A complex of thiourea and bismuth trichloride has been synthesized. Its composition is Bi3Cl9[SC(NH2)2]7. Crystallographic data are a = 7.141(2) Å, b = 8.820(3) Å, c = 16.365(5) Å, & = 99.389(4)°, β = 95.422(4)°, γ = 106.177(4)°, triclinic system. There are the mononuclear anion [BiCl5SC(NH2)2]2− and the dinuclear cation {Bi2Cl4[SC(NH2)2]6}2& with the Bi–Cl–Bi bridge bonds in the complex. The electric conductance of the absolute methanol solution contained the complex indicates that the complex is an ionic compound. Raman spectra indicate that the bismuth ion is coordinated by the sulfur atoms of the thiourea. The thermal analysis verifies the structure of complex. The TG–MASS curves show the structure rearrangement in the complex at about 118 °C. The DSC curves and calculation means that the structure rearrangement is irreversible.

Restricted access

Abstract

A new homologous series of curing agents (LCECAn) containing 4,4′-biphenyl and n-methylene units (n = 2, 4, 6) were successfully synthesized. The curing behaviors of a commercial diglycidyl ether of bisphenol-A epoxy (E-51) and 4,4′-bis(2,3-epoxypropoxy)biphenyl (LCE) by using LCECAn as the curing agent have been investigated by differential scanning calorimetry (DSC), respectively. The Ozawa equation was applied to the curing kinetics based upon the dynamic DSC data, and the isothermal DSC data were fitted using an autocatalytic curing model. The glass transition temperatures (T g) of the cured epoxy systems were determined by DSC upon the second heating, and the thermal decomposition temperatures (T d) were obtained by thermogravimetric (TG) analyses. The results show that the number of methylene units in LCECAn has little influence on the curing temperatures of E-51/LCECAn and LCE/LCECAn systems. In addition, the activation energies obtained by the dynamic method proved to be larger than those by the isothermal method. Furthermore, both the T g and T d of the cured E-51/LCECAn systems and LCE/LCECAn systems decreased with the increase in the number of methylene units in LCECAn.

Restricted access

Abstract

Organically modified clay minerals with high thermal stability are critical for synthesis and processing of clay-based nanocomposites. Two series of organo-montmorillonites have been synthesized using surfactants with different alkyl chain length. The organo-montmorillonites were characterized by X-ray diffraction and differential thermogravimetry, combining with molecule modelling. For surfactant with relatively short alkyl chain, the resultant organo-montmorillonite displays a small maximum basal spacing (ca. 1.5 nm) and most surfactants intercalate into montmorillonite interlayer spaces as cations with a small amount of surfactant molecules loaded in the interparticle pores with “house-of-cards” structure. However, for surfactant with relatively long alkyl chain, the resultant organo-montmorillonite displays a large maximum basal spacing (ca. 4.1 nm) and the loaded surfactants exist in three formats: intercalated surfactant cations, intercalated surfactant molecules (ionic pairs), and surfactant molecules in interparticle pores. The surfactant molecules (ionic pairs) in interparticle pores and interlayer spaces will be evaporated around the evaporation temperature of the neat surfactant while the intercalated surfactant cations will be evaporated/decomposed at higher temperature.

Restricted access
Acta Biologica Hungarica
Authors: Xiang-Rong Xu, Fu-Qing Tan, Jun-Quan Zhu, Ting Ye, Chun-Lin Wang, Yi-Feng Zhu, Hans-Uwe Dahms, Fan Jin and Wan-Xi Yang

We used single-cell gel electrophoresis (SCGE) to detect the integrity of sperm DNA of the teleost large yellow croaker, Pseudosciaena crocea, cryopreserved with Cortland solution and a range of 5% to 30% DMSO concentrations in order to test how sperm cryopreservation affected the DNA stability of nuclei. Electrophoresis was conducted for 60 min at 130 mA and 15 V. The comet images were analyzed with software CometScore 1.5, and parameters such as comet length, tail length and percentage DNA in the tail were obtained. Then the comet rate and damage coefficient were calculated. Results demonstrated that there were no significant differences in motility, comet rate and damage coefficient between fresh sperm and cryopreserved sperm stored in 5%, 10%, 15% and 20% DMSO, while the sperm cryopreserved with 25% and 30% DMSO had a lower motility, higher comet length and damage coefficients than those of fresh sperm. There was a positive correlation between comet rate of cryopreserved sperm and the concentration of DMSO. Our results demonstrate that toxicity of the cryoprotectant is the main cause of DNA damage in cryopreserved sperm nuclei.

Restricted access
Journal of Radioanalytical and Nuclear Chemistry
Authors: Jihao Zhu, Songlin Feng, Dongyu Fan, Xiangqian Feng, Qing Xu, Huishan Quan, Yueming Shen, Zhenxi Zhuo and Wenjiang Zhang

Abstract  

Chemical composition is an important information of studying the provenance character of ancient pottery and porcelain. The ancient celadon samples produced in Later Tang (850–907 A.D.) to Former Southern Song (1127–1279 A.D.) have been analyzed with NAA. Its provenance characteristic was compared with that of Hongzhou Kiln of Jiangxi Province and Yaozhou Kiln of Shanxi Province in this paper. The experimental data were studied with statistic methods. The results indicated that the chemical compositions of ancient porcelain body samples made in three kilns were different. The difference is able to be identified. The porcelain body materials of both Silongkou Yue Kiln and Hongzhou Kiln were similar. The samples of Yaozhou kiln in north of China existed obvious difference.

Restricted access
Acta Veterinaria Hungarica
Authors: Chang-Liang Yan, Qi-En Yang, Guang-Bin Zhou, Yun-Peng Hou, Xue-Ming Zhao, Zhi-Qiang Fan, Man-Qing Liu, Lin Liu and Shi-En Zhu

The present study was designed to investigate the cryotolerance of in vitro fertilised (IVF) mouse embryos at various preimplantation developmental stages. IVF mouse embryos were vitrified by the open-pulled straw (OPS) method. After warming, embryos were morphologically evaluated and assessed by their development to blastocysts, hatched blastocysts or term. The results showed that a high proportion (93.3–100.0%) of vitrified embryos at all developmental stages were morphologically normal after recovery. The developmental rate of vitrified 1-cell embryos to blastocyst (40.0%) or hatched blastocyst (32.7%) or term (9.3%) was significantly lower than that from other stages (P < 0.05). Vitrified embryos from 2-cell to early blastocyst stage showed similar blastocyst (71.8–89.5%) and hatched blastocyst rates (61.1–69.6%) and could develop to term without a significant loss of survival compared with those of fresh embryos (P > 0.05). Vitrified 2-cell embryos showed the highest survival rate in vivo (50.6%, 88/174), compared with that from other stages (9.3–30.5%, P < 0.05). The data demonstrate that the OPS method is suitable for the cryopreservation of IVF mouse embryos from 2-cell stage to early blastocyst stage without a significant loss of survival. Embryos at the 2-cell stage had the best tolerance for cryopreservation in the present study.

Restricted access
JPC - Journal of Planar Chromatography - Modern TLC
Authors: Qing Zhu, Haijun Wu, Fang Wang, Anqi He, Kun Huang, Yongju Wei, Cuige Liu, Yanjun Zhai, Shifu Weng, Zhanlan Yang, Yizhuang Xu, Isao Noda and Jinguang Wu

While in situ TLC/FTIR technique has tremendous potential in the analysis of complex mixtures, the conventional stationary phase, such as silica gel, used for TLC/FTIR analysis, has strong absorption in IR region and thus brings about severe interference in the obtained FTIR spectra of the separated samples. In this work, we propose to use lanthanum fluoride fine particles as a new stationary phase of a TLC plate. The average size of LaF3 particles is around 100 nm. FTIR spectrum of the LaF3 particles has no interfering absorption. Preliminary TLC experiments show that mixtures of rhodamine B and methylene blue mixture can be successfully separated by this new TLC plate using LaF3 fine particles as a stationary phase. Methylene blue and rhodamine B from separated spot can be clearly detected by using in situ FTIR spectra.

Restricted access
Journal of Thermal Analysis and Calorimetry
Authors: Li-Fang Song, Cheng-Li Jiao, Chun-Hong Jiang, Jian Zhang, Li-Xian Sun, Fen Xu, Qing-Zhu Jiao, Yong-Heng Xing, F. L. Huang, Yong Du, Zhong Cao, Fen Li and Jijun Zhao

Abstract

One-three-dimensional metal-organic frameworks Mg1.5(C12H6O4)1.5(C3H7NO)2 (MgNDC) has been synthesized solvothermally and characterized by single crystal XRD, powder XRD, FT-IR spectra. The low-temperature molar heat capacities of MgNDC were measured by temperature modulated differential scanning calorimetry (TMDSC) over the temperature range from 205 to 470 K for the first time. No phase transition or thermal anomaly was observed in the experimental temperature range. The thermodynamic parameters of MgNDC such as entropy and enthalpy relative to reference temperature of 298.15 K were derived based on the above molar heat capacities data. Moreover, the thermal stability and decomposition of MgNDC was further investigated through thermogravimetry (TG)–mass spectrometer (MS). Three stages of mass loss were observed in the TG curve. TG–MS curve indicated that the oxidative degradation products of MgNDC are mainly H2O, CO2, NO, and NO2.

Restricted access
Journal of Thermal Analysis and Calorimetry
Authors: Chun-Hong Jiang, Li-Fang Song, Jian Zhang, Li-Xian Sun, Fen Xu, Fen Li, Qing-Zhu Jiao, Zhen-Gang Sun, Yong-Heng Xing, Yong Du, Ju-Lan Zeng and Zhong Cao

Abstract

A novel metal organic framework [Co (BTC)1/3 (DMF) (HCOO)]n (CoMOF, BTC = 1,3,5-benzene tricarboxylate, DMF = N,N-dimethylformamide) has been synthesized solvothermally and characterized by single crystal X-ray diffraction, X-ray powder diffraction, and FT-IR spectra. The molar heat capacity of the compound was measured by modulated differential scanning calorimetry (MDSC) over the temperature range from 198 to 418 K for the first time. The thermodynamic parameters such as entropy and enthalpy versus 298.15 K based on the above molar heat capacity were calculated. Moreover, a four-step sequential thermal decomposition mechanism for the CoMOF was investigated through the thermogravimetry and mass spectrometer analysis (TG-DTG-MS) from 300 to 800 K. The apparent activation energy of the first decomposition step of the compound was calculated by the Kissinger method using experimental data of TG analysis.

Restricted access
Journal of Thermal Analysis and Calorimetry
Authors: Li-Fang Song, Chun-Hong Jiang, Cheng-Li Jiao, Jian Zhang, Li-Xian Sun, Fen Xu, Qing-Zhu Jiao, Yong-Heng Xing, Yong Du, Zhong Cao and Feng-Lei Huang

Abstract

A metal-organic framework [Mn(4,4′-bipy)(1,3-BDC)]n (MnMOF, 1,3-BDC = 1,3-benzene dicarboxylate, 4,4′-bipy = 4,4′-bipyridine) has been synthesized hydrothermally and characterized by single crystal XRD and FT-IR spectrum. The low-temperature molar heat capacities of MnMOF were measured by temperature-modulated differential scanning calorimetry for the first time. The thermodynamic parameters such as entropy and enthalpy relative to reference temperature 298.15 K were derived based on the above molar heat capacity data. Moreover, the thermal stability and the decomposition mechanism of MnMOF were investigated by thermogravimetry analysis-mass spectrometer. A two-stage mass loss was observed in air flow. MS curves indicated that the gas products of oxidative degradation were H2O, CO2, NO, and NO2.

Restricted access