Search Results

You are looking at 1 - 1 of 1 items for

  • Author or Editor: R. Kerman x
  • Refine by Access: All Content x
Clear All Modify Search

Abstract  

Пустьk-мерное евклид ово пространствоR k рассматривается как подмножествоR n. Зафиксируемр, 1<р<∞ иα >(n−k)/p, α≠п. Как обычно, бесселев потенциалJαf обобщенной функции Шварцаf наR n определяется с помощ ью ее преобразования Фурь е
\documentclass{aastex} \usepackage{amsbsy} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{bm} \usepackage{mathrsfs} \usepackage{pifont} \usepackage{stmaryrd} \usepackage{textcomp} \usepackage{upgreek} \usepackage{portland,xspace} \usepackage{amsmath,amsxtra} \pagestyle{empty} \DeclareMathSizes{10}{9}{7}{6} \begin{document} $$(\widehat{G_\alpha f})(\xi ) = (2\pi )^{ - n/2} [1 + |\xi |^2 ]^{\alpha /2} f(\xi ), \xi \in R^n .B$$ \end{document}
, ξ∈R n. В работе характ еризуются положител ьные весовые функцииw(x 1,...,x k ), которые при продолжении наR n с помощью равенстваw(x 1,...,x k,...,x n )=w(x 1, ...,x k ) обладают с ледующим свойством: существует числос>0, не зависящее отf, такое, что
\documentclass{aastex} \usepackage{amsbsy} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{bm} \usepackage{mathrsfs} \usepackage{pifont} \usepackage{stmaryrd} \usepackage{textcomp} \usepackage{upgreek} \usepackage{portland,xspace} \usepackage{amsmath,amsxtra} \pagestyle{empty} \DeclareMathSizes{10}{9}{7}{6} \begin{document} $$\begin{gathered} \int\limits_{R^k } {|(G_\alpha f)(x_1 ,...,x_k ,0,...,0)w(x_1 ,...,x_k )|^p dx_1 ...dx_k \leqq } \hfill \\ \leqq C\int\limits_{R^n } {|f(x_1 ,...,x_n )w(x_1 ,...,x_n )|^p dx_1 ...dx_n } \hfill \\ \end{gathered}$$ \end{document}
Restricted access