Search Results

You are looking at 1 - 9 of 9 items for

  • Author or Editor: R. Z. Hu x
  • Refine by Access: All Content x
Clear All Modify Search

Abstract  

The thermal decomposition characteristics of1,7-diazido-2,4,6-trinitrazaheptane (DATH) and multi-component systems containing DATH were studied by using DSC, TG and DTG techniques. Three –NO2 groups in the DATH molecule break away first from the main chain when DATH is heated up to 200C. Following this process, the azido groups and the residual molecule decompose rapidly to release a great deal of heat within a short time. In the multi-component systems, DATH undergoes a strong interaction with the binder of the double-base propellant and a weak interaction with RDX. The burning rates of the two propellants were determined by using a Crawford bomb. The results showed that the burning rate rises by about 19–66% when 23.5%DATH is substituted for RDX in a minimum smoke propellant. Meanwhile, the N2 level in the combustion gases is enhanced, which is valuable for a reduction of the signal level of the solid propellant.

Restricted access

Abstract  

The title compound 3,3-dinitroazetidinium (DNAZ) 3,5-dinitrosalicylate (3,5-DNSA) was prepared and the crystal structure has been determined by a four-circle X-ray diffractometer. The thermal behavior of the title compound was studied under a non-isothermal condition by DSC and TG/DTG techniques. The kinetic parameters were obtained from analysis of the TG curves by Kissinger method, Ozawa method, the differential method and the integral method. The kinetic model function in differential form and the value of E a and A of the decomposition reaction of the title compound are f(α)=4α3/4, 130.83 kJ mol−1 and 1013.80s−1, respectively. The critical temperature of thermal explosion of the title compound is 147.55 °C. The values of ΔS , ΔH and ΔG of this reaction are −1.35 J mol−1 K−1, 122.42 and 122.97 kJ mol−1, respectively. The specific heat capacity of the title compound was determined with a continuous C p mode of mircocalorimeter. Using the relationship between C p and T and the thermal decomposition parameters, the time of the thermal decomposition from initiation to thermal explosion (adiabatic time-to-explosion) was obtained.

Restricted access

The turbulence intensity is an important feature of the turbulent airflow and draught sensation in ventilated rooms. The turbulence is often measured with hot-wire (in fluid mechanics applications) and hot-sphere sensors (in indoor air comfort investigations). In this paper the turbulence was measured with hot-wire and hot-sphere sensors in a full-scale single office room based on air speed measurements. Isothermal air injection was applied and the measurements were conducted on eight different inlet volume flow rates. The two applied sensors resulted two independent samples, which were evaluated with different statistical methods. The results showed that there was not significant difference between the standard deviation and average of the measured samples. Thus, the two sensors statistically gave the same results on probability level 95%.

The referred international standards suggest an average turbulence intensity 40% for draught comfort design in mixing ventilation. The results showed that most of the measured turbulence intensities were less than the recommended standard turbulence intensity.

Open access

Abstract

As N-2′,4′-dinitrophenyl-3,3-dinitroazetidine (DNPDNAZ) is an important derivative of 3,3-dinitroazetidine, its thermal behavior was studied under 0.1 and 2 MPa by the differential scanning calorimetry (DSC) method. The results of this study show that there are one melting process and two exothermic decomposition processes. Its kinetic parameters of the intense exothermic decomposition process were obtained from the analysis of the DSC curves. The activation energy and the mechanism function under 0.1 MPa are 167.26 kJ mol−1 and f(α) = 3(1 + α)2/3[(1 + α)1/3− 1]−1/2, respectively, and the said parameters under 2 MPa are 169.30 kJ mol−1 and f(α) = 3(1 + α)2/3[(1 + α)1/3− 1]−1/2, respectively. The specific heat capacity of DNPDNAZ was determined using a continuous C p mode of micro-calorimeter. Using the relationship between C p and T with the thermal decomposition parameters, the time of the thermal decomposition from initialization to thermal explosion (adiabatic time-to-explosion, t TIAD), the self-accelerating decomposition temperature (T SADT), thermal ignition temperature (T TIT), critical temperatures of thermal explosion (T b), and half-life (t 1/2) were obtained to evaluate its thermal safety under different pressures.

Restricted access

Abstract

3,3-Dinitroazetidinium (DNAZ) salt of perchloric acid (DNAZ·HClO4) was prepared, it was characterized by the elemental analysis, IR, NMR, and a X-ray diffractometer. The thermal behavior and decomposition reaction kinetics of DNAZ·HClO4 were investigated under a non-isothermal condition by DSC and TG/DTG techniques. The results show that the thermal decomposition process of DNAZ·HClO4 has two mass loss stages. The kinetic model function in differential form, the value of apparent activation energy (E a) and pre-exponential factor (A) of the exothermic decomposition reaction of DNAZ·HClO4 are f(α) = (1 − α)−1/2, 156.47 kJ mol−1, and 1015.12 s−1, respectively. The critical temperature of thermal explosion is 188.5 °C. The values of ΔS , ΔH , and ΔG of this reaction are 42.26 J mol−1 K−1, 154.44 kJ mol−1, and 135.42 kJ mol−1, respectively. The specific heat capacity of DNAZ·HClO4 was determined with a continuous C p mode of microcalorimeter. Using the relationship between C p and T and the thermal decomposition parameters, the time of the thermal decomposition from initiation to thermal explosion (adiabatic time-to-explosion) was evaluated as 14.2 s.

Restricted access

Biofortifying food crops with essential minerals would help to alleviate mineral deficiencies in humans. Detection of quantitative trait loci (QTLs) for mineral nutrient contents in rice was conducted using backcross inbred lines derived from an interspecific cross of Oryza sativa × O. rufipogon. The population was grown in Hangzhou and Lingshui, with the contents of Mg, Zn, Fe, Mn, Cu and Se in brown rice measured in both trials and that in milled rice tested in Hangzhou only. A total of 24 QTLs for mineral element contents were identified, including two for both the brown and milled rice, 17 for brown rice only, and five for milled rice only. All the seven QTLs detected for the mineral contents in milled rice and 13 of the 19 QTLs for the contents in brown rice had the enhancing alleles derived from O. rufipogon. Fifteen QTLs were clustered in seven chromosomal regions, indicating that common genetic-physiological mechanisms were involved for different mineral nutrients and the beneficial alleles could be utilized to improve grain nutritional quality by markerassisted selection.

Restricted access
Physiology International
Authors: M. Michalis, K.J. Finn, R. Podstawski, S. Gabnai, Á. Koller, A. Cziráki, M. Szántó, Z. Alföldi, and F. Ihász

Abstract

Within recent years the popularity of sportive activities amongst older people, particularly competitive activities within certain age groups has increased. The purpose of this study was to assess the differences in the cardiorespiratory output at anaerobic threshold and at maximal power, output during an incremental exercise, among senior and young athletes. Ten elderly male subjects [mean (SD) age: 68.45 ± 9.32 years] and eight young male subjects [mean (SD) age: 25.87 ± 5.87 years] performed an incremental exercise test on a treadmill ergometer. No significant differences in body size were evident; however, the differences between the groups for peak power (451.62 ± 49 vs. 172.4 ± 32.2 W), aerobic capacity (57.97 ± 7.5 vs. 40.36 ± 8.6 mL kg−1 min−1), maximal heart rate (190.87 ± 9.2 vs. 158.5 ± 9.1 beats min−1), peak blood lactate (11 ± 1.7 vs. 7.3 ± 1.4 mmol L−1), and % VO2max at ventilatory thresholds (93.18 ± 4.3 vs. 79.29 ± 9.9%) were significantly lower in the senior athletes. The power output at anaerobic threshold was also higher (392 ± 48 vs. 151 ± 23 W) in the young athletes, explaining the significant difference in terms of performance between these groups. We have observed an evident deterioration in some of the cardiovascular parameters; however, the submaximal exercise economy seems to be preserved with aging. Exercise economy (i.e. metabolic cost of sustained submaximal exercise) was not different considerably with age in endurance-trained adults.

Open access

This paper presents a regional application of the Global Entrepreneurship and Development Index (GEDI) methodology of Acs et al. (2013) to examine the level of entrepreneurship across Hungary’s seven NUTS-2 level regions between 2006 and 2012. The Regional Entrepreneurship and Development Index (REDI) has been constructed for capturing the individual efforts, and their contextual features, of entrepreneurship across regions. The REDI method builds on a Systems of Entrepreneurship Theory and provides a way to profile Regional Systems of Entrepreneurship. Important aspects of the REDI method include the Penalty for Bottleneck analysis, which helps in identifying constraining factors in Regional Systems of Entrepreneurship, and Policy Portfolio Optimisation analysis, which helps policymakers consider trade-offs between alternative policy scenarios and associated allocations of policy resources. The paper describes the entrepreneurial disparities amongst Hungarian regions and provides public policy suggestions to improve the level of entrepreneurship and to optimise resource allocation over the 14 pillars of entrepreneurship in the seven Hungarian regions.

Restricted access
Acta Alimentaria
Authors: E. Horvath-Szanics, J. Perjéssy, A. Klupács, K. Takács, A. Nagy, E. Koppány-Szabó, F. Hegyi, E. Németh-Szerdahelyi, M.Y. Du, Z.R. Wang, J.Q. Kan, and Zs. Zalán

The increasing consumer demand for less processed and more natural food products – while improving those products’ quality, safety, and shelf-life – has raised the necessity of chemical preservative replacement. Biopreservation refers to extended storage life and enhanced safety of foods using the natural microflora and (or) their antibacterial products. Chitinolytic enzymes are of biotechnological interest, since their substrate, chitin, is a major structural component of the cell wall of fungi, which are the main cause of the spoilage of food and raw plant material. Among the several organisms, many bacteria produce chitinolytic enzymes, however, this behaviour is not general. The chitinase activity of the lactic acid bacteria is scarcely known and studied.

The aim of the present study was to select Lactobacillus strains that have genes encoding chitinase, furthermore, to detect expressed enzymes and to characterise their chitinase activity. Taking into consideration the importance of chitin-bindig proteins (CBPs) in the chitinase activity, CBPs were also examined. Five Lactobacillus strains out of 43 strains from 12 different species were selected by their chitinase coding gene. The presence of the chitinase and chitin-biding protein production were confirmed, however, no chitinolytic activity has been identified.

Open access