Search Results

You are looking at 1 - 4 of 4 items for

  • Author or Editor: Ranjeet Kumar x
  • Refine by Access: All Content x
Clear All Modify Search

Abstract  

Bioassay technique is used for the estimation of actinides present in the body based on the excretion rate of body fluids. For occupational radiation workers urine assay is the preferred method for monitoring of chronic internal exposure. Determination of low concentrations of actinides such as plutonium, americium and uranium at low level of mBq in urine by alpha-spectrometry requires pre-concentration of large volumes of urine. This paper deals with standardization of analytical method for the determination of U-isotopes in urine samples using anion-exchange resin and 232U tracer for radiochemical recovery. The method involves oxidation of urine followed by co-precipitation of uranium along with calcium phosphate. Separation of U was carried out by Amberlite, IRA-400, anion-exchange resin. U-fraction was electrodeposited and activity estimated using tracer recovery by alpha-spectrometer. Eight routine urine samples of radiation workers were analyzed and consistent radiochemical tracer recovery was obtained in the range of 51% to 67% with a mean and standard deviation of 60% and 5.4%, respectively.

Restricted access

Abstract  

Bioassay technique is used for the estimation of actinides present in the body based on their excretion rate through body fluids. For occupational radiation workers urine assay is the preferred method for monitoring of chronic internal exposure. Determination of low concentrations of actinides such as plutonium, americium and uranium at low level of mBq in urine by alpha spectrometry requires pre-concentration of large volumes of urine. This article deals with standardization of analytical method for the determination of 241Am isotope in urine samples using Extraction Chromatography (EC) and 243Am tracer for radiochemical recovery. The method involves oxidation of urine followed by co-precipitation of americium along with calcium phosphate. This precipitate after treatment is further subjected to calcium oxalate co-precipitation. Separation of Am was carried out by EC column prepared by PC88-A (2-ethyl hexyl phosphonic acid 2-ethyl hexyl monoester) adsorbed on microporous resin XAD-7 (PC88A-XAD7). Am-fraction was electro-deposited and activity estimated using tracer recovery by alpha spectrometer. Ten routine urine samples of radiation workers were analyzed and consistent radiochemical recovery was obtained in the range 44–60% with a mean and standard deviation of 51 and 4.7% respectively.

Restricted access

Abstract  

Bioassay technique is used for the estimation of actinides present in the body based on their excretion rate through body fluids. For occupational radiation workers urine assay is the preferred method for monitoring of chronic internal exposure. Determination of low concentrations of actinides such as plutonium, americium and uranium at low level of mBq in urine by alpha spectrometry requires pre-concentration of large volumes of urine. This paper deals with standardization of analytical method for the determination of Pu-isotopes in urine samples using anion exchange resin and 236Pu tracer for radiochemical recovery. The method involves oxidation of urine followed by co-precipitation of plutonium along with calcium phosphate. Separation of Pu was carried out by Amberlite, IRA-400, anion exchange resin. Pu-fraction was electrodeposited and activity estimated using tracer recovery by alpha spectrometer. Twenty routine urine samples of radiation workers were analyzed and consistent radiochemical tracer recovery was obtained in the range 74–96% with a mean and standard deviation of 85 and 6% respectively.

Restricted access

Abstract

In the current scenario of the global economy and race for the next Asian super power, overall economic strength of the two countries, India and China, is a most debated topic. The future role of intellectual property protection especially in the form of patent system and the growth of industrialization for these two developing economies in ASIA may prove to be crucial over all other assets. In the current development scene of the changing global market supported by intangible asset of inventions protected mainly through the patents is emerging to play an important role. This paper elaborates the statistical research on patents granted/filed in the US Patent and Trade Mark office (US-PTO), PCT of WIPO and in the home countries over last 35 years of aforesaid two Asian countries. It is found that the economic and technological growth of both of the countries may make main difference primarily based on the level of patenting activity by them.

Restricted access