Search Results

You are looking at 1 - 1 of 1 items for

  • Author or Editor: Richárd Zsuppán x
Clear All Modify Search
Orvosi Hetilap
Authors: Dezső Ribli, Richárd Zsuppán, Péter Pollner, Anna Horváth, Zoltán Bánsághi, István Csabai, Viktor Bérczi and Zsuzsa Unger

Absztrakt:

Bevezetés és célkitűzés: A számítógépes ’mélytanulás’ (deep learning) az elmúlt két évtized számítástechnikai fejlődésének legjelentősebb ajándéka. A számítógépes mélytanulásban rejlő – egyelőre még beláthatatlan – lehetőségek megértése, befogadása és alkalmazása a medicina megkerülhetetlen feladata. Módszer: Ajándék és feladat, hiszen az exponenciálisan növekvő adatok (képalkotó vizsgálati, laboratóriumi, terápiaválasztási lehetőségek, terápia-kölcsönhatások stb.) „bitjeinek” tengerében minden vágyunk és deklarációnk ellenére mind kevésbé tudjuk a személyre és állapotra, a tumorra és környezetére szabott individuális ellátást megvalósítani. Eredmények: A jelen pillanatban felelős ellátóként – és nem kevésbé felelős finanszírozóként – azt élhetjük meg, hogy egyéni és közösségi szinten is szuboptimális folyamatokat tartunk fenn, aminek oka egyszerre az adatok bősége, ugyanakkor az ellátáshoz individuálisan fontos adatok hiánya. A számítógépes mélytanulás, a medicina lényegét adó ember–ember közti találkozás gyógyító erejét nem csorbítva – hanem inkább kiterjesztve –, ebben kínál fényt az alagútban. Következtetés: Belátva tehát saját adatintegrációs és ismereti korlátainkat, nekünk, orvosoknak és ellátásfinanszírozóknak – sajátos előítéleteinket és félelmeinket feladva – kell megtanulni a számítógépes mélytanulásban rejlő különleges lehetőségeket, melyek nemcsak a képalkotó diagnosztikában, hanem már napi realitásként a terápia területén is használhatók (immunterápia). A közlemény ehhez igyekszik kedvet csinálni. Orv Hetil. 2019; 160(4): 138–143.

Open access