Search Results

You are looking at 1 - 2 of 2 items for

  • Author or Editor: Roberta Peila x
  • Refine by Access: All Content x
Clear All Modify Search

Modified organophilic montmorillonites/LDPE nanocomposites

Preparation and thermal characterization

Journal of Thermal Analysis and Calorimetry
Authors: Roberta Peila, S. Lengvinaite, G. Malucelli, A. Priola, and S. Ronchetti

Abstract  

In this work a commercially available organophilic Montmorillonite (Cloisite 30B) was modified by interaction with different surfactants, namely dodecylsuccinic anhydride (DSA), octadecylamine (ODA), octadecanoic alcohol (ODOH) and octadecanoic acid (ODAc), in order to increase its basal spacing and to achieve a better dispersibility in LDPE. The morphology of the dispersions was investigated through XRD and TEM analyses. Intercalation phenomena were found for all the systems investigated. The thermal properties of the obtained nanocomposites were studied by means of DSC and TGA measurements. No variation of T m and crystallinity of LDPE was found after the addition of the nanoclays (5 mass/mass%). A significant increase of the air thermal stability of LDPE was achieved in the presence of the modified nanoclays.

Restricted access

Abstract  

Three types of commercially available organophilic Montmorillonite (Cloisite 30B, 25A and 15A) were used to prepare VARTM epoxy resin nanocomposites in order to study the effect of the nanoclay organophilic modification on the epoxy matrix. The morphology of the dispersions was investigated through XRD and TEM analyses. The thermal stability of the nanocomposites was studied by means of HI-RES TG measurements and the influence of the nanoclay on the viscosity of the resin was investigated through rheological measurements. It was found that the nanoclay modification had no significant influence on the dispersion and on the thermal properties of the nanocomposites. Areas of exfoliated and intercalated morphology were observed. The viscosity of the resin furthermore did not exceed the critical value of the infusion process.

Restricted access