Search Results

You are looking at 1 - 3 of 3 items for

  • Author or Editor: Sándor Beszédes x
  • Refine by Access: All Content x
Clear All Modify Search

Extraction of pectic substances from solid agro-wastes and the application of recovered pectin in the food, pharmaceutical and cosmetic industry can significantly contribute to a more economic and environmentally sound agro-industrial production. Thus investigation of the physicochemical properties of extracted pectic substances seems important not only from human health preservation considerations, but their advantageous properties can be confirmed for the possible manufacturers, potential processing, as well. Therefore, in this work pectic substances were extracted from red currant, black currant, raspberry, blackberry and elderberry press residues by hot water and the composition, antioxidant activity, total phenol, anthocyanin content and the color coordinates of pectins were determined. The results show that the pectin colors fall in the range between reddish purple (black currant and elderberry) and yellow (citrus and apple). Moreover some of the pectins in a powder form have different color coordinates than in the form of aqueous solutions or gels. This might be very important when the pectins are selected for different production processes. The anthocyanin content of pectin preparations is lower than the values of fruit juices. It can be concluded that the colorants found in pectin preparations belong to the group of phenolics and have adequate antioxidant capacity, which is extremely beneficial for human health. As a summary it was concluded that the investigated pectins can be easily extracted and successfully used as natural colorants or antioxidants since they have adequate antioxidant activity, total phenol and anthocyanin content and suitable color coordinates.

Restricted access


Industrial wastewater is a growing environmental challenge due to its high concentrations of organics and its limited biological degradability. Up to date, however, no published work discussed industrial wastewater characterization, which is the focus of this study. Moreover, the effect of hydrothermal treatment on the chemical oxygen demand (COD) removal and the soluble chemical oxygen demand (SCOD) release was investigated in this work. Wastewater samples were collected from different industrial sites and characterized in order to determine their initial properties. It was summarized that the salinity of wastewater estimated by EC was relatively low, and its pH values were in the acceptable range. On the other hand, however, high values of sodium absorption ratio (SAR) were obtained in all samples post to hydrothermal treatment. Nonetheless, our results revealed higher SCOD release post to hydrothermal treatment suggesting better efficiency of COD removal obtained by this treatment technique.

Open access
Progress in Agricultural Engineering Sciences
Péter Bor
József Csanádi
Gábor Veréb
Sándor Beszédes
Zita Šereš
Zsuzsanna László
Cecilia Hodúr
, and
Szabolcs Kertész

To meet the requirements defined by environmental protection regulations effective wastewater treatment is required to process effluents before discharging them into sewers or living waters. While membrane separation offers a quite advantageous method to reduce the organic load of wastewaters, membrane fouling is still limiting its application in wastewater treatment.

In this study, the possibility of membrane fouling reduction by increased shear rates on the surface of the membrane was investigated. 7 and 10 kDa MWCO ultrafiltration and 240 Da nanofiltration membranes were studied, with the use of a laboratory mode Vibratory Shear Enhanced Processing. This work mostly focused on studying the effects of module vibration and recirculation feed flow rate on permeate flux, specific energy demand and membrane rejections. Using the same operation parameters, vibration and non-vibration mode experiments were carried out with high and low recirculation flow rate to have a deeper understanding of the shear rate effects. It can be concluded that higher shear rate had a positive effect on the process: increased shear rate resulted in higher flux, higher overall rejection values, as well as a significantly decreased specific energy demand. By calculating and comparing the shear rates in experiments with different operating parameters, both vibration and nonvibration mode, both low and high recirculation flow rate, we have reached the conclusion that vibration causes a significantly higher shear rate increase than setting the recirculation flow rate high.

Restricted access