Search Results

You are looking at 1 - 2 of 2 items for

  • Author or Editor: S. Basavaraja x
  • Refine by Access: All Content x
Clear All Modify Search

Interpretation of partial thermal decomposition mechanism of Dy2(SO4)3·8H2O

Thermal, electrical and spectroscopic techniques

Journal of Thermal Analysis and Calorimetry
Authors:
S. Basavaraja
,
A. Venkataraman
, and
Arabinda Ray

Abstract  

Partial dehydration of Dy2(SO4)3·8H2O was studied employing TG, DSC, D.C. electrical conductivity and spectroscopic techniques. The possible mechanism for the loss of water molecules (partial dehydration) was found to be random nucleation obeying Mapel equation based on TG trace. The DSC traces are supports the results of TG traces and are also utilized to understand the enthalpy changes accompanying the partial dehydration and phase transition accompanying the dehydrated samples. D.C. electrical conductivity studies are attempted to supplement these TG studies. Attempts are made to explain the structural changes accompanying dehydration on the basis of infrared spectra and X-ray diffraction and scanning electron microscopic studies.

Restricted access

Abstract

Polycarbonate with γ-Fe2O3 and CuO dispersions were carried out by solvent casting method to make polycarbonate-γ-Fe2O3 and polycarbonate-CuO composite films. These films were characterized for the molecular structure through FTIR spectroscopy and crystallinity by X-ray diffraction (XRD) measurements. The morphology of polycarbonate-γ-Fe2O3 was found to be different from that of polycarbonate-CuO composite films based on the scanning electron micrograph (SEM) images. The thermal traces of composites are different from that of pure polycarbonate which indicating the catalytic decomposition when compared with virgin polymer which is oxidative decomposition. An understanding of the structure, morphology, and thermal behaviour of the composite films are envisaged in the present study.

Restricted access