Search Results

You are looking at 1 - 2 of 2 items for

  • Author or Editor: S. Larson x
  • All content x
Clear All Modify Search

Abstract  

Cigarette smoking is a major source of particles released in indoor environments. A comprehensive study of the elemental distribution in cigarettes and cigarette smoke has been completed. Specifically, concentrations of thirty elements have been determined for the components of 15 types of cigarettes. Components include tobacco, ash, butts, filters, and cigarette paper. In addition, particulate matter from mainstream smoke (MS) and sidestream smoke (SS) were analyzed. The technique of elemental determination used in the study is instrumental neutron activation analysis. The results show that certain heavy metals, such as As, Cd, K, Sb and Zn, are released into the MS and SS. These metals may then be part of the health risk of exposure to smoke. Other elements are retained, for the most part, in cigarette ash and butts. The elemental distribution among the cigarette components and smoke changes for different smoking conditions.

Restricted access

Abstract  

Over 50 million tons of coal ash are produced annually in North America. Technological improvements in air pollution control have decreased stack emissions but have also increased contaminant concentrations in the ash of coal-fired boiler applications. The leaching of heavy metals and other elements during regulatory tests may cause coal ash ro be classified as hazardous waste, complicating land disposal. The hazardous nature of coal ash remains unclear because current toxicity tests fail to effectively characterize the elemental distribution and chemical solubility of trace metals in the landfill environment. Leaching characteristics of ash samples can be investigated with various laboratory extraction procedures in association with multi-elemental analytical techniques (e.g., neutron activation analysis and inductively coupled plasma-atomic emission spectroscopy). Such methods provide more thorough analyses of coal ash leaching dynamics than the regulatory assessments can demonstrate. Regulatory elements including Ag, As, Ba, Cd, Cr, Hg, Pb, and Se were shown to remain in largely insoluble forms while elements such as B and S leached at higher levels. Experimental results may assist operators of coal-fired boiler industries in selecting coal types and disposal options to curtail the leaching of potentially toxic inorganic contaminants.

Restricted access