Search Results

You are looking at 1 - 2 of 2 items for

  • Author or Editor: S. Madaan x
  • All content x
Clear All Modify Search

ADP-glucose pyrophosphorylase (AGPase) activity in the developing grains of two contrasting wheat cultivars WH730 (thermo-tolerant) and UP2565 (thermo-sensitive) was determined in relation to their allosteric effectors and grain growth. The developing grains (35 days after anthesis) were excised from the middle portion of spikes of wheat genotypes subjected to high temperature, drought and their combination at booting, post-anthesis and booting+post-anthesis. The impact of stress treatments was studied by measuring starch content and yield attributes in relation to AGPase activity. AGPase, a key enzyme for starch synthesis, is allosterically activated by 3-phosphoglyceric acid (3-PGA) and inhibited by inorganic phosphate (Pi). Sensitivity of AGPase towards individual and combined high temperature and drought has not been adequately investigated, therefore the present study analyzed AGPase activity, its sensitivity to allosteric effectors under influence of high temperature, drought in order to elucidate the relationship of AGPase with starch accumulation and grain growth. Significant difference in behavior of the enzyme and its allosteric effectors were observed between the two cultivars under high temperature and/or drought. AGPase activity was substantially decreased by high temperature, drought and was found to be positively correlated with the 3-PGA, starch accumulation and yield attributes, while negatively correlated with Pi content. The results showed that effects of high temperature and drought were additive and more severe at booting+post-anthesis stage. Such studies might help in understanding the control mechanisms associated with the pathway of starch biosynthesis and thus provide chemical means to manipulate starch content vis-à-vis grain yield under heat and drought stress.

Restricted access

Drought and high temperature are two major factors limiting crop production. The two stresses occur together in many regions of the world but they usually are investigated separately. Irrespective of the genotype, growth or treatment conditions, grain growth was severely reduced when wheat plants were exposed to high temperature, drought and combination of both the stresses during endosperm cell division. The extent of thermal as well as drought induced disruption of grain development, however was dependent on genotype. This structural data support the hypothesis that high temperature and drought during endosperm cell division reduces grain sink potential and subsequently mature grain mass, mainly by disrupting cell divisions in peripheral and central endosperm and thus reducing endosperm length and breadth to a considerable extent. The interaction of high temperature and drought stresses resulted in stronger reduction of pericarp thickness and endosperm size than either stress alone.

Restricted access