Search Results

You are looking at 1 - 3 of 3 items for

  • Author or Editor: S. Pampana x
  • All content x
Clear All Modify Search

Waterlogging is one of the limiting factors influencing durum wheat (Triticum durum L.) production. In this paper we investigated the impact of seven waterlogging durations of 4, 8, 12, 16, 20, 40, and 60 days, imposed at 3-leaf and 4-leaf growth stages, on grain yield, grain yield components, straw and root dry weight and nitrogen concentration of grain, straw, and roots of two varieties of durum wheat. Grain yield of both varieties showed a significant reduction only when waterlogging was prolonged to more than 20 days, and 40-d and 60-d waterlogging reduced grain yield by 19% and 30%. Waterlogging depressed grain yield preventing many culms from producing spikes. It slowed down spikelet formation, consequently reducing the number of spikelets per spike, and reduced floret formation per spikelet, thus reducing the number of kernels per spike.

Restricted access
Cereal Research Communications
Authors: S. Pampana, A. Masoni, L. Ercoli, M. Mariotti, and I. Arduini

Optimum nitrogen fertilizer management for wheat production is important for maximum economic yield and minimum pollution of the environment. A lysimetric trial was conducted in Central Italy during 2008–2009 and 2009–2010 on durum wheat varieties Latinur and Svevo to evaluate effects of ammonium sulphate and Entec 46 at sowing, of ammonium sulphate and urea at topdressing and of three split applications (0–90–90, 30–75–75 and 60–60–60 kg N ha−1) of the same amount of nitrogen on grain yield and yield components, N uptake and N leaching. Grain yield was higher in Latinur than in Svevo. The highest production was achieved in 2009 with the 60–60–60 splitting, and in 2010 with 0–90–90. In both years, the highest total N uptake was recorded with the 30–75–75 splitting, regardless of N source. Nitrogen leaching increased with the increasing amount of N rate at sowing. Amount of N-NO3 lost by leaching during wheat cycle was 25 kg ha−1, almost entirely accounted for N leaching in the period November–January.

Restricted access

Soil gravel content affects many soil physical properties, as well as crop yield. Little is known regarding the influence of soil gravel content on growth and nutrient uptake of durum wheat ( Triticum durum Desf.). The accumulation of nitrogen and phosphorous during the vegetative and reproductive periods and the contribution of pre-anthesis assimilates to grain N and P content have been evaluated in two durum wheat varieties grown on soils with 0, 10, 20 and 30% gravel content. The two varieties showed similar behaviour and the increase of soil gravel decreased plant biomass during the entire biological cycle. Nitrogen and P concentration of all plant parts was not affected by soil gravel content, while N and P content was greatly reduced, owing to the effect on dry matter yield. Post-anthesis accumulation and remobilization of N and P were greatly reduced: the decrease from gravel-free soil to 30% gravel content was about 41 kg N ha −1 and 4 kg P ha −1 for the former and 14 kg N ha −1 and 2 kg P ha −1 for the latter. The differences in growth rate were attributed to differences in development of the root system due to the restricted soil volume.

Restricted access