Search Results

You are looking at 1 - 2 of 2 items for

  • Author or Editor: S. Panno x
  • All content x
Clear All Modify Search

Summary  

Halides, particularly Br- and Cl-, have been used as indicators of potential sources of Na+ and Cl- in surface water and groundwater with limited success. Contamination of groundwater and surface water by Na+ and Cl- is a common occurrence in growing urban areas and adversely affects municipal and private water supplies in Illinois and other states, as well as vegetation in environmentally sensitive areas. Neutron activation analysis (NAA) can be effectively used to determine these halogens, but often the elevated concentrations of sodium and chlorine in water samples can give rise to very high detection limits for bromine and iodine due to elevated backgrounds from the activation process. We present a detailed analytical scheme to determine Cl, Br and I in aqueous samples with widely varying Na and Cl concentrations using epithermal NAA in conjunction with Compton suppression.

Restricted access

Abstract  

The enormous utilization of phosphate rock and super phosphate derived from it have the potential of being an important factor in the contamination of aquifers with alpha emitting radionuclides and heavy metals. Both rock phosphate and super phosphate contain substantial levels of natural uranium, amounting to hundreds of ppm. Our study has shown that whereas the uranium series in phosphate rock is nearly in secular equilibrium, in super phosphate the226Ra and its progeny are depleted by 60–70%. This is a result of the chemical processing of the rock phosphate. On the other hand the super phosphate is much more soluble and can be expected to release its radionuclides to the environment more rapidly than rock phosphate. The present study explores the release of radioisotopes and heavy metals from phosphate fertilizers. Extensive analytical use has been made of a germanium well-detector/Compton suppression system.

Restricted access