Search Results

You are looking at 1 - 10 of 39 items for

  • Author or Editor: S. Reddy x
  • Refine by Access: All Content x
Clear All Modify Search

Abstract  

Synergistic solvent extraction of Eu(III) and Tb(III) from thiocyanate solutions with mixtures of 2-ethylhexylphosphonic acid mono-2-ethylhexyl ester (EHPNA) and di-2-ethylhexylphosphoric acid (DEHPA) or tributyl phosphate (TBP) or trioctylphosphine oxide (TOPO) or triphenylphosphine oxide (TPhPO) in benzene has been studied. The mechanism of extraction can be explained by a simple chemically based model presented in this paper. The equilibrium constants of the mixed-ligand species of the various neutral donors have been determined by non-linear regression analysis.

Restricted access

Abstract  

Extraction of Tm(III), from thiocyanate media, by different sulfoxides (R2SO) has revealed that the extractable complex is Tm(SCN)3·4 R2SO. When mixtures of DPSO and HTTA are used for the extraction of Tm(III) from thiocyanate or perchlorate media, synergistic enhancement of the extraction of Tm(III) results. The complexes responsible for the enhanced extraction are Tm(TTA)3·DPSO and Tm(TTA)3·2 DPSO when perchlorate media were employed for the extraction and Tm(SCN)(TTA)2·2 DPSO and Tm(SCN)2(TTA)·3 DPSO, in addition to the above two when a thiocyanate medium was employed for the extraction. Values of equilibrium constants for some equilibria encountered in the extraction of Am(III) and Tm(III) by mixtures of DPSO and HTTA are given.

Restricted access

Abstract  

A simple and sensitive spectrophotometric method is developed for the determination of throium in aqueous medium. The metal ion forms yellow coloured complex with 2,4-dihydroxybenzaldehyde isonicotinoyl hydrazone (2,4-DHBINH) in the pH range 2.0–8.0. The complex shows an absorption maximum at 390 nm. The absorbance of the complex is maximum at pH 5.5 Beer's law is obeyed in the range 0.30–7.00 g/ml of thorium(IV). The molar absorptivity and the Sandell's sensitivity of the method are 2.20· 104 l·mol–1·cm–1 and 0.0106 g/cm–2, respectively. The interference of various ions was studied. The composition of the complex is 1:1 {Th(IV) : 2,4-DHBINH}. The first derivative spectrum of the complex shows a zero cross at 391.2 nm and maximum amplitude at 415 nm. Thus a sensitive derivative spectrophotometric method for the determination of Th(IV) is proposed.

Restricted access

Abstract  

Nickel contents in different finished product alloys were determined using a k 0-based internal monostandard instrumental neutron activation analysis (IM-INAA) method. Five stainless steels (SS) and three high nickel alloys were analyzed by IM-INAA. BCS CRMs 225/1 (low alloy steel) and 466 (austenitic SS) and NIST SRM 247 (high Ni alloy) were analyzed to evaluate the accuracy of the method. The results of CRMs and SS were found to be in good agreement with certified or specified values. The Ni contents in the high nickel alloys were also determined by relative method of NAA for verification. Nickel contents in BCS CRM 466 and SS 316M were determined by UV–Visible spectrophotometry and the values were found to be in good agreement with IM-INAA results.

Restricted access

The role of the different genome combinations in a polyploid on phenotypic stability was analysed in wheat and triticale. Twelve genotypes with four genome combinations (AABB, AABBDD, AABBRR and AABBDDRR) were raised in eight artificially created environments. The data on grains per spike, 100-grain weight and grain yield per plant were recorded and analysed following the models of Perkins and Jinks (1968) and Eberhart and Russell (1966). The results revealed that in polyploid species the genes for stability were not uniformly distributed in different genomes. It was therefore inferred that stability may largely depend on the gene combination rather than on the genome combination.

Restricted access

Attempts were made to produce tetraploid triticales by crossing 6x triticales with diploid rye. In F2, the chromosome number was reduced to between 15 and 23 except in three plants, where the chromosome number was 28, 32 and 38, respectively. An increased frequency of ring bivalents was observed in many F4 plants. In the progeny of the plant with 28 chromosomes, desired plants (four) with 2n = 28 chromosomes were obtained. Data on various agronomic characters were recorded on the progeny of these plants in F5. Reasonably good fertility was noticed in these tetraploid triticale forms.

Restricted access

Summary

A stability-indicating gradient reverse-phase liquid chromatographic method was developed for the quantitative determination of process-related impurities and forced degradation products of oxcarbazepine in pharmaceutical formulation. The method was developed by using Inertsil cyano (250 × 4.6 mm) 5 μm column with mobile phase containing a gradient mixture of solvent A (0.01 M sodium dihydrogen phosphate, pH adjusted to 2.7 with orthophosphoric acid and acetonitrile in the ratio of 80:20 v/v) and B (50:40:10 v/v/v mixture of acetonitrile, water, and methanol). The flow rate of mobile phase was 1.0 mL min−1. Column temperature was maintained at 25°C and detection wavelength at 220 nm. Developed reverse-phase high-performance liquid chromatography (RP-HPLC) method can adequately separate and quantitate five impurities of oxcarbazepine, namely imp-A, imp-B, imp-C, imp-D, and imp-E. Oxcarbazepine was subjected to the stress conditions of oxidative, acid, base, hydrolytic, thermal, and photolytic degradation. Oxcarbazepine was found to degrade significantly in acid, base, and oxidative stress conditions. The degradation products were well resolved from oxcarbazepine and its impurities. The developed method was validated as per International Conference on Harmonization (ICH) guidelines with respect to specificity, linearity, limit of detection and quantification, accuracy, precision, and robustness.

Full access

Abstract  

A number of essential trace elements play a major role in various metabolic pathways and in many diseases like autoimmune, neurological and psychiatric. This study is undertaken with an aim to evaluate the levels of different trace elements in the scalp hair samples of patients suffering from alcohol induced psychosis by particle induced X-ray emission technique (PIXE). It is observed that Fe (p < 0.0005), Cu (p < 0.001) are significantly higher in the hair samples of alcohol induced psychosis patients compared to those in normals while concentrations of Mn (p < 0.005) and Zn (p < 0.0001) are lower. The concentrations of Co and Ni in the hair samples are found to be in consonance with the concentrations in the normals.

Restricted access