Search Results

You are looking at 1 - 3 of 3 items for

  • Author or Editor: S.F. Dai x
  • Refine by Access: All Content x
Clear All Modify Search

Two fundamental test systems were used to evaluate the visco-elastic properties of doughs from wheat samples of three varieties grown at four distinct sites. For comparison, tests were also performed with traditional equipment, namely the Mixograph, an extension tester and a Farinograph-type small-scale recording mixer. Uniaxial dough elongation (with an Instron) produced results similar to the conventional extension tester, except that results were provided in fundamental units (Pascals), the critical value recorded being the elongational stress at maximum strain. Stress relaxation measurements were performed following a small initial shear strain. With this method, it was possible to distinguish between the viscosity and the elastic components of dough visco-elasticity. In all the tests the extra dough-strength properties were evident for the variety (Guardian) that had the 5 + 10 glutenin subunits, in contrast to the other two with the 2 + 12 combination of subunits.

Restricted access

New high-molecular-weight glutenin (HMW glutenin) sequences isolated from six Psathyrostachys juncea accessions by thermal asymmetric interlaced PCR differ from previous sequences from this species. They showed novel modifications in all of the structural domains, with unique C-terminal residues, and their N-terminal lengths were the longest among the HMW glutenins reported to date. In their repetitive domains, there were three repeatable motif units: 13-residue [GYWH(/I/Y)YT(/Q)S(/T)VTSPQQ], hexapeptide (PGQGQQ), and tetrapeptide (ITVS). The 13-residue repeats were restricted to the current sequences, while the tetrapeptides were only shared by D-hordein and the current sequences. However, these sequences were not expressed as normal HMW glutenin proteins because an in-frame stop codon located in the C-termini interrupted the intact open reading frames. A phylogenetic analysis supported different origins of the P. juncea HMW glutenin sequences than that revealed by a previous study. The current sequences showed a close relationship with D-hordein but appeared to be more primitive.

Restricted access
Cereal Research Communications
Authors: S.F. Dai, D.Y. Xu, Z.J. Wen, Z.P. Song, H.X. Chen, H.Y Li, J.R. Li, L.Z. Kang, and Z.H. Yan

A novel 4.0-kb Fy was sequenced and bacterially expressed. This gene, the largest y-type HMW-GS currently reported, is 4,032-bp long and encodes a mature protein with 1,321 amino acid (AA) residues. The 4.0-kb Fy shows novel modifications in all domains. In the N-terminal, it contains only 67 AA residues, as three short peptides are absent. In the repetitive domain, the undecapeptide RYYPSVTSPQQ is completely lost and the dodecapeptide GSYYPGQTSPQQ is partially absent. A novel motif unit, PGQQ, is present in addition to the two standard motif units PGQGQQ and GYYPTSPQQ. Besides, an extra cysteine residue also occurs in the middle of this domain. The large molecular mass of the 4.0-kb Fy is mainly due to the presence of an extra-long repetitive domain with 1,279 AA residues. The novel 4.0-kb Fy gene is of interest in HMW-GS gene evolution as well as to wheat quality improvement with regard to its longest repetitive domain length and extra cysteines residues.

Restricted access