Search Results

You are looking at 1 - 2 of 2 items for

  • Author or Editor: SKM. Pothinathan x
  • Refine by Access: All Content x
Clear All Modify Search

Abstract

For the past few decades innovation in construction material has grown a lot. This leads to special concrete such as self-compacting concrete, geopolymer concrete, self-healing concrete, etc. To prepare a special concrete apart from regular concreting material some sort of special materials was also needed, like mineral and chemical admixtures. Hence it is necessary to study the effect of these admixtures in cement paste and mortar before studying the same in concrete. Hence an attempt is made to study the effect of mineral and chemical admixtures in the fresh and hardened properties of cement paste and mortar. For this study ultrafine natural steatite powder is taken as mineral admixture and polycarboxylic based superplasticizer and glenium stream 2 were taken as chemical admixtures. Ultrafine natural steatite powder was used as additive to cement in various percentages like 0%, 5%, 10%, 15%, 20% and 25%. Superplasticizer and viscosity modifying admixture were taken as 1.5% and 0.5%, respectively. Then various combinations were worked out. To study the fresh property of cement paste consistency, initial setting time and miniature slump cone test were done based on the results yield stress of cement paste also calculated empirically. To study the hardened property compression test on cement mortar was done. Based on the test results it is clear that the addition of ultrafine natural steatite powder increases the water demand hence reduces the workability. On the other hand, it increases the compressive strength up to a certain limit. Adding superplasticizer increases the workability and reduces the water demand and viscosity modifying admixture reduces the bleeding and segregation effects hence increases the compressive strength.

Open access

Abstract

In this study, an endeavor is made to discuss mainly the mechanism, use, and application of polymer modified concrete which is increasing in general fame due to its simplicity, ease of handling, proficiency, and agreeable outcomes. This work explores the impact of adding a new polymer named glycoluril on the mechanical property through the estimation of compression, tension, and flexural strength. Physical properties such as density, sorptivity, and acid resistance were studied to establish the durability of concrete. This examination additionally ponders the impact of polymer in concrete and polymer dosage. Series of concrete mix with 0%, 1%, 2%, 3%, and 4% glycoluril by the mass of binder were prepared, cured, and tested in 7 days and 28 days. Results indicate that there is no adjustment in the workability aspect, however, the improvement of strength factor in compression, tension, and flexure is recorded when compared with the conventional concrete. The experimental results show that by increasing the proportion of glycoluril, the strength of concrete increased up to 3% in addition. In the meantime, the 3% addition provided a higher outcome than the other blend. Further expanding the polymer content marginally decreased the strength. The outcome affirms that the utilization of new polymer in concrete will increase the desired property.

Open access