Search Results

You are looking at 1 - 2 of 2 items for

  • Author or Editor: Sanka Balasuriya x
  • Refine by Access: All Content x
Clear All Modify Search


Let χ be a primitive multiplicative character modulo an integer m ≥ 1. Using some classical bounds of character sums, we estimate the average value of the character sums with subsequence sums
\documentclass{aastex} \usepackage{amsbsy} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{bm} \usepackage{mathrsfs} \usepackage{pifont} \usepackage{stmaryrd} \usepackage{textcomp} \usepackage{upgreek} \usepackage{portland,xspace} \usepackage{amsmath,amsxtra} \pagestyle{empty} \DeclareMathSizes{10}{9}{7}{6} \begin{document} $$T_m (\mathcal{S},\chi ) = \sum\nolimits_{\mathcal{I} \subseteq \{ 1, \ldots ,N\} } {\chi (\sum\nolimits_{i \in \mathcal{I}} {s_i } )}$$ \end{document}
taken over all N-element sequences S = (s 1, …, s N) of integer elements in a given interval [K + 1, K + L]. In particular, we show that T m (S, χ) is small on average over all such sequences. We apply it to estimating the number of perfect squares in subsequence sums in almost all sequences.
Restricted access

We give upper bounds for sums of multiplicative characters modulo an integer q ≧ 2 with the Euler function ϕ ( n ) and with the shifted largest prime divisor P ( n ) + a of integers nx .

Restricted access