Search Results

You are looking at 1 - 10 of 34 items for

  • Author or Editor: Sheng Li x
Clear All Modify Search

Abstract

Low temperature heat capacities of the solid coordination compound, Zn(Met)(NO3)2·1/2H2O(s), have been measured by a precision automated adiabatic calorimeter over the temperature range 78–371 K. The initial dehydration temperature of the coordination compound is determined to be, T D = 325.05 K, by analysis of the heat-capacity curve. The experimental values of molar heat capacities in the temperature region have been fitted to a polynomial equation of heat capacities with the reduced temperature (X), [X = f(T)], by a least squares method. Smoothed heat capacities and thermodynamic functions relative to the standard reference temperature 298.15 K of the compound are derived from the fitted polynomial equation and listed at 5 K internals. Enthalpies of dissolution of {ZnSO4·7H2O(s) + 2NaNO3(s) + l-Met (s)} and {Zn(Met)(NO3)2·1/2H2O(s) + Na2SO4(s)} in 100 cm3 of 2 mol dm−3 HCl(aq) at T = 298.15 K have been determined to be = (56.929 ± 0.051) kJ mol−1 and = (37.337 ± 0.029) kJ mol−1, respectively, with an isoperibol solution-reaction calorimeter. The standard molar enthalpy of formation of the compound is determined to be [Zn(Met)(NO3)2·1/2H2O, s] = −(1327.08 ± 0.75) kJ mol−1 from the enthalpies of dissolution of the reactants and products and other thermodynamic data by a Hess’ thermochemical cycle.

Restricted access

Abstract

Titanium dioxide (TiO2), polythiophene and polythiophene/TiO2 were prepared by sol–gel and solid-state reaction methods. Water-free iron(III) chloride (FeCl3) was used as an oxidant. The phase composition, morphology and the spectral properties of the products were characterized by XRD, TEM, UV–Vis and FT-IR techniques. The photocatalytic activity of the products was evaluated by the degradation of methyl orange under sunlight irradiation. TEM results showed that the polythiophene/TiO2 composite particles were well dispersed, rod-like shaped with 20 × 80 nm dimensions. UV–Vis analysis indicated that the absorption edge of polythiophene/TiO2 was 605 nm. Compared with the unmodified TiO2 and bare polythiophene, polythiophene/TiO2 exhibited largely enhanced activity for the photocatalytic degradation of methyl orange under sunlight irradiation. A degradation efficiency of methyl orange of 85.6% could be obtained within 120 min. The sensitization mechanism of polythiophene for the TiO2 photocatalyst is discussed briefly.

Restricted access

Abstract  

A novel complex [Ni(H2O)4(TO)2](NO3)2·2H2O (TO = 1,2,4-triazole-5-one) was synthesized and structurally characterized by X-ray crystal diffraction analysis. The decomposition reaction kinetic of the complex was studied using TG-DTG. A multiple heating rate method was utilized to determine the apparent activation energy (E a) and pre-exponential constant (A) of the former two decomposition stages, and the values are 109.2 kJ mol−1, 1013.80 s−1; 108.0 kJ mol−1, 1023.23 s−1, respectively. The critical temperature of thermal explosion, the entropy of activation (ΔS ), enthalpy of activation (ΔH ) and the free energy of activation (ΔG ) of the initial two decomposition stages of the complex were also calculated. The standard enthalpy of formation of the new complex was determined as being −1464.55 ± 1.70 kJ mol−1 by a rotating-bomb calorimeter.

Restricted access

Abstract  

A rapid separation system based on SISAK technique was established to isolate 142La successfully from fission products. SISAK technique is often applied in the separation of nuclides with the half-life of seconds or minutes. Here it was used to separate the parent nuclide of 142La, which the half-life is in the magnitude of several seconds. According to the separation procedure designed in the paper, the activity of 142La acquired is more than 104 Bq and the decontamination factors for most γ-emitters are higher than 103.

Restricted access

A simple, rapid, and effective high-performance thin-layer chromatographic (HPTLC) method has been established for differentiating among the polysaccharides present in six traditional Chinese medicines (TCM), Cordyceps sinensis, Ganoderma lucidum, Astragalus memberanaceus, Panax ginseng, Panax quinquefolii , and Panax notogiseng . Acid hydrolyzates of the polysaccharides were analyzed by HPTLC with two detection reagents, aniline-diphenylamine-phosphoric acid and ninhydrin, and scanning densitometry. The compounds were separated on silica gel plates with chloroform- n -butanol-methanol-acetic acid-water 4.5:12.5:5:1.5:1.5 ( v/v ) as mobile phase. Seven monosaccharides and two glucuronic acids were used as reference compounds. The results showed that hydrolysis of polysaccharides can release specific molecules present in the herbal species in addition to the monosaccharides present. This is useful for distinguishing the origins of the polysaccharides in Chinese medicines.

Restricted access

Abstract  

Nano Ni–W catalysts with different tungsten contents prepared by mixing alkaline nickel carbonate with ammonium tungstate show high activity and good sulfur tolerance for hydrogenation of thiophene-containing ethylbenzene. The catalysts were characterized by XRD, TPR, SEM, Raman and BET. The results show that the activity of the catalysts for ethylbenzene hydrogenation is affected profoundly by W loading and the best result was obtained on catalyst with W/Ni ratio equal to 0.16. The increase of activity of the catalyst can be attributed to the interaction between Ni and W doped and the increase of the surface area of the catalyst.

Restricted access

Abstract  

This work examines the sequestration of 64Cu(II) by sorption process onto plasma-induced polyaniline (PANI)-grafted multiwalled carbon nanotubes (denoted as MWCNTs/PANI) prepared by an plasma-induced grafting technique. The role of a variety of environmental conditions such as pH, ionic strength, natural organic matter (NOM) in the sorption of 64Cu(II) onto MWCNTs/PANI is studied. The results indicate that the sorption is strongly dependent on pH but independent of ionic strength. A positive effect of NOM on 64Cu(II) sorption is found at pH <7.5, whereas a negative effect is observed at pH >7.5. The sorption isotherms in the absence and presence of NOM can be better described by Freundlich model than Langmuir model. Sorption isotherms of 64Cu(II) at higher initial NOM concentrations are higher than those at lower NOM concentrations. The thermodynamic data calculated from temperature-dependent sorption suggest that the sorption is spontaneous and enhanced at higher temperature. Results of this work suggest that MWCNTs/PANI may be a promising candidate for cost-effective treatments of 64Cu(II)-contaminated wastewaters.

Restricted access

Abstract

The stability of β-cyclodextrin-cinnamyl alcohol inclusion complex (β-CD·C9H10·8H2O) was investigated using TG and DSC. The mass loss took place in three stages: the dehydration occurred between 50–120°C; the dissociation of β-CD·C9H10O occurred in the range of 210–260°C; and the decomposition of β-CD began at 280°C. The dissociation of β-CD·C9H10O was studied by means of thermogravimetry, and the results showed: the dissociation of β-CD·C9H10O was dominated by a two-dimensional diffusion process (D2). The activation energyE was 161.2 kJ mol−1, the pre-exponential factorA was 4.5×1013 min−1.

Cyclodextrin is able to form inclusion complexes with a great variety of guest molecules, and the interesting of studies focussed on the energy binding cyclodextrin and the guest molecule.

In this paper, β-cyclodextrin-cinnamyl alcohol inclusion complex was studied by fluorescence spectrophotometry and infrared absorption spectroscopy, and the results show: the stable energy of inclusion complexes of β-CD with weakly polar guest molecules consists mainly of Van der Waals interaction.

Restricted access

Abstract

The stability of the inclusion complex of β-CD with cinnamic aldehyde was investigated by means of TG and DSC. The mass loss takes place in three stages: dehydration occurs at 50–120°C; dissociation of β-CD·C9H8O proceeds in the range 200–260°C; and decomposition of β-CD begins at 280°C. The kinetics of the dissociation of β-CD·C9H8O was studied by means of thermogravimetry both at constant temperature and with linearly increasing temperature. The results demonstrate that the dissociation of β-CD·C9H8O is dominated by a one-dimensional diffusion process. The activation energyE is 160 kJ mol−1, and the pre-exponential factorA is 5.8×1014 min−1. Scanning electron microscope observations and the results of crystal structure analysis are in good agreement with those of thermogravimetry.

Restricted access

Abstract

Described in this paper are the synthesis, characterization and catalytic application of H-ZSM-5 zeolites for the conversion of CH3Br into aromatics. The H-ZSM-5 zeolites were fabricated by hydrothermal crystallization using n-butylamine (BTA) as a template and characterized by XRD, SEM and NH3-TPD techniques. The effects of batch SiO2/Al2O3 ratio, alkalinity, NaCl/Al2O3 ratio, seed crystals, and crystallization time on the yield, structure/texture and catalytic performance were systematically studied. Adopting the optimum sol (SiO2/Al2O3 = 70, BTA/SiO2 = 0.2847, Na2O/SiO2 = 0.1237, H2O/SiO2 = 37.4, NaCl/Al2O3 = 60, and seed/SiO2 = 5 wt%) and under the most preferable crystallization conditions of 100 °C/24 h–170 °C/24 h, H-ZSM-5 zeolites of high crystallinity and small size (300–700 nm) were obtained. Good catalytic performance was observed over the H-ZSM-5 zeolites (aromatic yield up to 44.2%). However, unlike the modification of large commercial HZSM-5, the use of MoO3 or PbO as modifying agents for the small-size H-ZSM-5 zeolites results in a decline of catalytic performance. The relationship between the structure and the catalytic efficiency of as-synthesized H-ZSM-5 samples were investigated. It was found that with crystallinity enhancement and/or decline in crystal size, there is improvement of catalytic performance.

Restricted access