# Search Results

## You are looking at 1 - 2 of 2 items for

• Author or Editor: Sofyen Louhichi
Clear All Modify Search  # Some multivariate inequalities with applications

Authors: Sana Louhichi and Sofyen Louhichi

## Summary

Let \documentclass{aastex} \usepackage{amsbsy} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{bm} \usepackage{mathrsfs} \usepackage{pifont} \usepackage{stmaryrd} \usepackage{textcomp} \usepackage{upgreek} \usepackage{portland,xspace} \usepackage{amsmath,amsxtra} \usepackage{bbm} \pagestyle{empty} \DeclareMathSizes{10}{9}{7}{6} \begin{document} ${\cal {X}}_{n} =(X_1,\ldots,X_n)$ \end{document} be a random vector. Suppose that the random variables \documentclass{aastex} \usepackage{amsbsy} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{bm} \usepackage{mathrsfs} \usepackage{pifont} \usepackage{stmaryrd} \usepackage{textcomp} \usepackage{upgreek} \usepackage{portland,xspace} \usepackage{amsmath,amsxtra} \usepackage{bbm} \pagestyle{empty} \DeclareMathSizes{10}{9}{7}{6} \begin{document} $(X_i)_{1\leq i\leq n}$ \end{document} are stationary and fulfill a suitable dependence criterion. Let \documentclass{aastex} \usepackage{amsbsy} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{bm} \usepackage{mathrsfs} \usepackage{pifont} \usepackage{stmaryrd} \usepackage{textcomp} \usepackage{upgreek} \usepackage{portland,xspace} \usepackage{amsmath,amsxtra} \usepackage{bbm} \pagestyle{empty} \DeclareMathSizes{10}{9}{7}{6} \begin{document} $f$ \end{document} be a real valued function defined on \documentclass{aastex} \usepackage{amsbsy} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{bm} \usepackage{mathrsfs} \usepackage{pifont} \usepackage{stmaryrd} \usepackage{textcomp} \usepackage{upgreek} \usepackage{portland,xspace} \usepackage{amsmath,amsxtra} \usepackage{bbm} \pagestyle{empty} \DeclareMathSizes{10}{9}{7}{6} \begin{document} $\mathbbm{R}^n$ \end{document} having some regular properties. Let \documentclass{aastex} \usepackage{amsbsy} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{bm} \usepackage{mathrsfs} \usepackage{pifont} \usepackage{stmaryrd} \usepackage{textcomp} \usepackage{upgreek} \usepackage{portland,xspace} \usepackage{amsmath,amsxtra} \usepackage{bbm} \pagestyle{empty} \DeclareMathSizes{10}{9}{7}{6} \begin{document} ${\cal {Y}}_{n}$ \end{document} be a random vector, independent of \documentclass{aastex} \usepackage{amsbsy} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{bm} \usepackage{mathrsfs} \usepackage{pifont} \usepackage{stmaryrd} \usepackage{textcomp} \usepackage{upgreek} \usepackage{portland,xspace} \usepackage{amsmath,amsxtra} \usepackage{bbm} \pagestyle{empty} \DeclareMathSizes{10}{9}{7}{6} \begin{document} ${\cal {X}}_{n}$ \end{document}, having independent and identically distributed components. We control \documentclass{aastex} \usepackage{amsbsy} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{bm} \usepackage{mathrsfs} \usepackage{pifont} \usepackage{stmaryrd} \usepackage{textcomp} \usepackage{upgreek} \usepackage{portland,xspace} \usepackage{amsmath,amsxtra} \usepackage{bbm} \pagestyle{empty} \DeclareMathSizes{10}{9}{7}{6} \begin{document} $\left|\mathbbm{E}(f({\cal {X}}_{n}))-\mathbbm{E} (f({\cal {Y}}_{n}))\right|$ \end{document}. Suitable choices of the function \documentclass{aastex} \usepackage{amsbsy} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{bm} \usepackage{mathrsfs} \usepackage{pifont} \usepackage{stmaryrd} \usepackage{textcomp} \usepackage{upgreek} \usepackage{portland,xspace} \usepackage{amsmath,amsxtra} \usepackage{bbm} \pagestyle{empty} \DeclareMathSizes{10}{9}{7}{6} \begin{document} $f$ \end{document} yield, under minimal conditions, to rates of convergence in the central limit theorem, to some moment inequalities or to bounds useful for Poisson approximation. The proofs are derived from multivariate extensions of Taylor's formula and of the Lindeberg decomposition. In the univariate case and in the mixing setting the method is due to Rio (1995).

Restricted access

# On the asymptotic independent representations for sums of some weakly dependent random variables

Authors: Rafik Aguech, Sana Louhichi and Sofyen Louhichi

Let, for each n?N, (X i,n)0 ? i ? nbe a triangular array of stationary, centered, square integrable and associated real valued random variables satisfying the weakly dependence condition lim N ? N 0limsup n ? + 8 nSr=N nCov (X 0,n, X r,n)=0;where N 0is either infinite or the first positive integer Nfor which the limit of the sum nSr=N nCov (X 0,n, X r,n) vanishes as n goes to infinity. The purpose of this paper is to build, from (X i,n)0 ? i ? n, a sequence of independent random variables (X˜i,n)0 ? i ? nsuch that the two sumsSi =1 n X i,nandSi =1 n X˜i,nhave the same asymptotic limiting behavior (in distribution).

Restricted access  