Search Results

You are looking at 1 - 10 of 36 items for

  • Author or Editor: Song Wang x
Clear All Modify Search

Abstract  

Oxidized multiwalled carbon nanotubes (MWCNTs) were characterized by SEM and FTIR. The sorption of Th(IV) on MWCNTs was studied as a function of contact time, pH, ionic strength, Th(IV) concentration and temperature. The results indicate that the sorption of Th(IV) on MWCNTs is strongly dependent on pH and weakly dependent on ionic strength. The sorption thermodynamics of Th(IV) on MWCNTs was carried out at 293.15, 313.15 and 333.15 K, respectively, and the thermodynamic parameters (standard free energy changes (ΔG 0), standard enthalpy change (ΔH 0) and standard entropy change (ΔS 0)) were calculated from the temperature dependent sorption isotherms. The sorption of Th(IV) on MWCNTs is a spontaneous and endothermic process. The oxidized MWCNTs may be a promising candidate for the preconcentration and solidification of Th(IV), or its analogue actinides from large volumes of aqueous solutions.

Restricted access

Abstract  

The radiolytic stability of 25,27-bis(2-propyloxy)calix[4]-26,28-crown-6(iPr-C[4]C-6) was studied. The radiation source was 60Co and its dose rate was 437 Gy/min and the total absorbed dose was from 104 to 106 Gy. The iPr-C[4]C-6 solid and 0.025 mol/L iPr-C[4]C-6/n-octanol which were pre-equilibrated with 0.01 and 3 mol/L nitric acid, respectively, were absorbed different dose and their extraction performance were researched. The degradation mechanism of them was investigated by mass spectrometry and infrared spectrum. The results show that radiolytic stability of the iPr-C[4]C-6 solid and 0.025 mol/L iPr-C[4]C-6/n-octanol are good when their absorbed dose was less than 106 Gy. The extracting system of iPr-C[4]C-6/n-octanol is promising for separating cesium from high level liquid waste.

Restricted access

Abstract  

The study was undertaken to evaluate the feasibility of functionalized multi-walled carbon nanotubes (MWCNTs) for the removal of UO2 2+ from aqueous solutions. The MWCNTs was treated by oxygen plasma and characterized by FTIR and XPS. The characterization indicates that MWCNTs is successfully functionalized of oxygen groups such as –COOH on its surface (denote as P-MWCNTs). The sorption of UO2 2+ from aqueous solution on P-MWCNTs was studied as a function of contact time, solid contents, pH, ionic strength and temperature under ambient conditions using batch experiment. Two simplified kinetic models of pseudo-first-order and pseudo-second-order were tested to determine kinetic parameters such as rate constants, equilibrium sorption capacities and related correlation coefficients for kinetic models of the sorption process. It can be seen that the UO2 2+ sorption on P-MWCNTs could be described more favorably by the pseudo-second-order model. The thermodynamic parameters (∆G°, ∆S°, ∆H°) calculated from the temperature-dependent sorption isotherms indicated that the sorption of UO2 2+ on P-MWCNTs were an endothermic and spontaneous processes. The results of the present study suggest that P-MWCNTs can be used beneficially in treating industrial effluents containing radioactive and heavy metal ions.

Restricted access

Abstract

A method has been developed to estimate the Gibbs free energy of the non-equilibrium solid alloys with multicomponents based on differential scanning calorimetry (DSC) analysis. In this method, the DSC curves of the non-equilibrium and equilibrium alloys during heating up to fully melting and those of the alloys during solidifying were measured. Then the thermal effects of the solid phase transformations from non-equilibrium to equilibrium states and the equilibrium solidification could be calculated. By evolving the traditional equal-G curve principle to equal-G point, the Gibbs free energy of the equilibrium solid alloy with multicomponents could be obtained on condition that the free energy of the liquid alloy was known. Considering the thermal effects of the solid phase transformations from non-equilibrium to equilibrium states, the Gibbs free energy value of the non-equilibrium alloys with a given composition could be achieved although the phase constitution of the equilibrium solid alloys and the Gibbs free energy of each phase were not known, and the calculation errors could be reduced by dividing the alloys into many infinitesimal virtual pure metals. The Gibbs free energy of the non-equilibrium Al–Si–Mn alloys was calculated by using this method, confirming the validity of this method.

Restricted access

Phosphatidate phosphatase-1 (PAP1) enzymes (yeast Pah1p/Smp2p, mammalian lipin1-3) have a key role in lipid homeostasis by controlling the relative proportions of its substrate phosphatidate (PA) and its product diacylglycerol (DAG). Recent investigation shows that mammalian lipin-1 complements phenotypes exhibited by yeast pah1Δ mutant cells, which indicates the functions of PAP1 enzymes are evolutionarily conserved. The observation was confirmed after transformation of human LPIN1 into PAH1-defective yeast, which resulted in human LPIN1-induced accumulation of triacylglycerol (TAG )and lipid droplet formation. In double mutants lacking Tgl3p and Tgl4p, overexpression of PAH1 or LPIN1 induced TAG accumulation and excessive obesity. Furthermore, the obese yeast was used as a model to study the anti-obesity effects of PAP1 activity inhibitors, including propranolol and clenbuterol. The data showed that the inhibitors significantly suppressed TAG accumulation and lipid droplets formation. These findings demonstrate that LPIN1 plays a functional role in lipid synthesis and storage, a role which is highly conserved from human to yeast. Inhibition of TAG synthesis will become an efficacious treatment strategy for obesity and our excessive obesity model will provide a very useful tool for discovery of new anti-obesity drugs in the future.

Restricted access

Cytomixis has been described in many plant species, but not in Thinopyrum . The present study reports spontaneous cytomixis during microsporogenesis in Thinopyrum intermedium (2n = 42), Thinopyrum ponticum (2n = 70), and their F 1 hybrids with wheat. Cytomixis frequently occurred in early prophase I but very rarely in meiosis II. The type of cytomixis that occurred most often was where chromatins migrate from one nucleus into an adjacent cel1. Migration from one nucleus into two or more cells or from two or more nuclei into one cel1 was also observed. After a donor cell transferred chromatin to a recipient cell, the recipient cell would sometimes pass the chromatin on to another cell. Migration did not necessarily occur between cells in the same stage. Cytomixis in Th. ponticum and its hybrids with wheat was more complex than that in Th. intermedium . The possible causes, cytological consequences and genetic significance of cytomixis are discussed.

Restricted access

Based on an RP-18 sintered plate, a new type of plate, RP-18 sintered aluminum nitride ceramic plate, was manufactured, which was made from silica gel and glass powders sintered on an aluminum nitride ceramic plate by bonding octadecyl and methyl silanes in suitable proportion. The key step of making such a plate was to soak the ceramic plate in the solution of sodium hydroxide before coating; other steps were the same as those of conventional RP-18 sintered plates. Besides its high mechanical stability and regeneration ability, the plate could work perfectly without addition of any buffer salts to mobile phase in planar electrochromatography (PEC) and was superior in eliminating joule heating.In this work, we used only the conventional apparatus to study the superiority of the new plate in eliminating joule heating from one side of the thin layer. The new plate would exhibit more of its superiority if it were used on pressurized PEC (PPEC) to eliminate joule heating from two sides of the thin layer.

Restricted access

Two new types of reversed-phase sintered plate have been prepared used in planar electrochromatography (PEC). One was bonded with phenyl, instead of octadecyl, without end-capping or with different amounts of end-capping and the other was bonded with octadecyl and then end-capped with phenyl instead of methyl. Both worked well with mobile phases containing no buffer salts, and high potential could be used with low Joule heating. Four dyes were used as samples to examine the characteristics of these two types of plate in planar electrochromatography. The former was unsatisfactory but the latter gave satisfactory results. Our preliminary work revealed that suitable bonding of octadecyl was from 0.03 to 0.06 whereas suitable bonding of phenyl for end-capping was from 0.005 to 0.02, which was readily achieved.

Restricted access

Abstract  

The residual fluorine in ammonium uranyl tricarbonate (AUC) cannot be removed, while a large part of residual fluorine in ammonium diuranate (ADU) can be removed, when AUC and ADU are decomposed and reduced under dry hydrogen atmosphere. UO2 was prepared by decomposing and reducing AUC and ADU in dry hydrogen atmosphere. The defluorination kinetics of UO2 at 500–700°C in atmosphere of 50% H2-50% H2O was investigated. The results show that the defluorination kinetics supports the Lindman's assertion that the residual fluorine forms a solid-solution in UO2.

Restricted access

Abstract  

Aluminum (Al) nanopowders with mean diameter of about 50 nm and passivated by alumina (Al2O3) coatings were prepared by an evaporation route: laser heating evaporation. Thermal properties of the nanopowders were investigated by simultaneous thermogravimetric-differential thermal analysis (TG-DTA) in dry oxygen environment, using a series of heating rates (5, 10, 20, 30, 50 and 90°C min−1) from room temperature to 1200°C. With the heating rates rise, the onset and peak temperatures of the oxidation rise, and the conversion degree of Al to Al2O3 varies. However, the specific heat release keeps relatively invariant and has an average value of 18.1 kJ g−1. So the specific heat release is the intrinsic characteristic of Al nanopowders, which can represent the ability of energy release.

Restricted access