Search Results

You are looking at 1 - 6 of 6 items for

  • Author or Editor: Songsheng Lu x
  • Refine by Access: All Content x
Clear All Modify Search

Abstract  

The bentonite from Gaomiaozi county (Inner Mongolia, China) (denoted as GMZ bentonite) was characterized by X-ray powder diffraction and Fourier transform infrared spectroscopy. The effect of pH, contact time, ionic strength, humic acid (HA) and Eu(III) concentrations on Eu(III) sorption to the GMZ bentonite was studied by batch technique under ambient conditions. The sorption of Eu(III) on GMZ bentonite was strongly dependent on pH and independent of ionic strength. The sorption of Eu(III) on GMZ bentonite was mainly dominated by surface complexation rather than by ion exchange. The presence of HA enhanced Eu(III) sorption at low pH values, but decreased Eu(III) sorption at high pH values. The enhanced sorption of Eu(III) on GMZ bentonite at low pH was attributed to the strong complexation of Eu(III) with surface adsorbed HA on GMZ bentonite and the reduced sorption of Eu(III) at high pH was attributed to the formation of soluble HA–Eu complexes in aqueous solution. The strong sorption of Eu(III) on GMZ bentonite suggested that the GMZ bentonite could be used as the backfill material in nuclear waste disposal.

Restricted access

Abstract  

Sorption of radionickel on attapulgite is studied as a function of contact time, ionic strength, pH and temperature. The results indicate that the sorption of Ni(II) on attapulgite is strongly ionic strength-dependent at pH <8, and independent of ionic strength at pH >8. Outer-sphere surface complexation or ion exchange contributes to Ni(II) sorption on attapulgite at pH <8, whereas the sorption of Ni(II) is mainly dominated by inner-sphere surface complexation at pH >8. The sorption of Ni(II) on attapulgite increases with increasing temperature, and the thermodynamic parameters (ΔH 0, ΔG 0 and ΔS 0) calculated from the temperature dependent sorption isotherms suggest that the sorption of Ni(II) on attapulgite is a spontaneous and endothermic process. The high sorption capacity of attapulgite suggests that attapulgite is a suitable material for the preconcentration and solidification of radionickel from large volumes of aqueous solutions.

Restricted access

Abstract  

MX-80 bentonite was characterized by XRD and FTIR in detail. The sorption of Th(IV) on MX-80 bentonite was studied as a function of pH and ionic strength in the presence and absence of humic acid/fulvic acid. The results indicate that the sorption of Th(IV) on MX-80 bentonite increases from 0 to 95% at pH range of 0–4, and then maintains high level with increasing pH values. The sorption of Th(IV) on bentonite decreases with increasing ionic strength. The diffusion layer model (DLM) is applied to simulate the sorption of Th(IV) with the aid of FITEQL 3.1 mode. The species of Th(IV) adsorbed on bare MX-80 bentonite are consisted of “strong” species
\documentclass{aastex} \usepackage{amsbsy} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{bm} \usepackage{mathrsfs} \usepackage{pifont} \usepackage{stmaryrd} \usepackage{textcomp} \usepackage{upgreek} \usepackage{portland,xspace} \usepackage{amsmath,amsxtra} \pagestyle{empty} \DeclareMathSizes{10}{9}{7}{6} \begin{document} $$\equiv {\text{YOHTh}}^{4 + }$$ \end{document}
at low pH and “weak” species
\documentclass{aastex} \usepackage{amsbsy} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{bm} \usepackage{mathrsfs} \usepackage{pifont} \usepackage{stmaryrd} \usepackage{textcomp} \usepackage{upgreek} \usepackage{portland,xspace} \usepackage{amsmath,amsxtra} \pagestyle{empty} \DeclareMathSizes{10}{9}{7}{6} \begin{document} $$\equiv {\text{XOTh(OH)}}_{3}$$ \end{document}
at pH > 4. On HA bound MX-80 bentonite, the species of Th(IV) adsorbed on HA-bentonite hybrids are mainly consisted of
\documentclass{aastex} \usepackage{amsbsy} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{bm} \usepackage{mathrsfs} \usepackage{pifont} \usepackage{stmaryrd} \usepackage{textcomp} \usepackage{upgreek} \usepackage{portland,xspace} \usepackage{amsmath,amsxtra} \pagestyle{empty} \DeclareMathSizes{10}{9}{7}{6} \begin{document} $$\equiv {\text{YOThL}}_{3}$$ \end{document}
and
\documentclass{aastex} \usepackage{amsbsy} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{bm} \usepackage{mathrsfs} \usepackage{pifont} \usepackage{stmaryrd} \usepackage{textcomp} \usepackage{upgreek} \usepackage{portland,xspace} \usepackage{amsmath,amsxtra} \pagestyle{empty} \DeclareMathSizes{10}{9}{7}{6} \begin{document} $$\equiv {\text{XOThL}}_{1}$$ \end{document}
at pH < 4, and
\documentclass{aastex} \usepackage{amsbsy} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{bm} \usepackage{mathrsfs} \usepackage{pifont} \usepackage{stmaryrd} \usepackage{textcomp} \usepackage{upgreek} \usepackage{portland,xspace} \usepackage{amsmath,amsxtra} \pagestyle{empty} \DeclareMathSizes{10}{9}{7}{6} \begin{document} $$\equiv {\text{XOTh(OH)}}_{3}$$ \end{document}
at pH > 4. Similar species of Th(IV) adsorbed on FA bound MX-80 bentonite are observed as on FA bound MX-80 bentonite. The sorption isotherm is simulated by Langmuir, Freundlich and Dubinin–Radushkevich (D–R) models, respectively. The sorption mechanism of Th(IV) on MX-80 bentonite is discussed in detail.
Restricted access

Abstract  

The adsorption of Eu(III) on multiwalled carbon nanotubes (MWCNTs) as a function of pH, ionic strength and solid contents are studied by batch technique. The results indicate that the adsorption of Eu(III) on MWCNTs is strongly dependent on pH values, dependent on ionic strength at low pH values and independent of ionic strength at high pH values. Strong surface complexation and ion exchange contribute to the adsorption of Eu(III) on MWCNTs at low pH values, whereas surface complexation and surface precipitation are the main adsorption mechanism of Eu(III) on MWCNTs. The desorption of adsorbed Eu(III) from MWCNTs by adding HCl is also studied and the recycling use of MWCNTs in the removal of Eu(III) is investigated after the desorption of Eu(III) at low pH values. The results indicate that adsorbed Eu(III) can be easily desorbed from MWCNTs at low pH values, and MWCNTs can be repeatedly used to remove Eu(III) from aqueous solutions. MWCNTs are suitable material in the preconcentration and solidification of radionuclides from large volumes of aqueous solutions in nuclear waste management.

Restricted access

Abstract  

Iron oxide/multiwalled carbon nanotube magnetic composites (denoted as magnetic composites) were synthesized and characterized in detail. The magnetic composites can be separated from aqueous solution easily by using magnetic separation method. The application of magnetic composites in the removal of Eu(III) from large volumes of aqueous solutions was studied. The results indicated that the sorption of Eu(III) on the magnetic composites was strongly dependent on pH values and weakly dependent on ionic strength. The sorption of Eu(III) on the magnetic composites was mainly dominated by inner-sphere surface complexation. The linear sorption isotherms of Eu(III) suggested that Eu(III) sorption on the magnetic composites was far from saturation. The large sorption capacity and the easy magnetic separation method indicate that the magnetic composites may be a promising suitable material in nuclear waste management in future.

Restricted access

Abstract  

Multiwalled carbon nanotubes (MWCNTs) have attracted multidisciplinary study because of their unique physicochemical properties. Herein, the sorption of U(VI) from aqueous solution to oxidized MWCNTs was investigated as a function of contact time, pH and ionic strength. The results indicate that U(VI) sorption on oxidized MWCNTs is strongly dependent on pH and ionic strength. The sorption of U(VI) is mainly dominated by surface complexation and cation exchange. The sorption of U(VI) on oxidized MWCNTs is quickly to achieve the sorption equilibrium. The sorption capacity calculated from sorption isotherms suggests that oxidized MWCNTs are suitable material in the preconcentration and solidification of U(VI) from large volumes of aqueous solutions.

Restricted access