Search Results

You are looking at 1 - 2 of 2 items for

  • Author or Editor: Stevan W. Djuric x
Clear All Modify Search

Abstract

A continuous-flow microfluidic electrochemical device (Flux Module) has been designed and evaluated as a practical new laboratory tool to facilitate electrochemical synthetic transformations. Four- and six-electron benzylic oxidations are reported to illustrate the utility afforded by a unique route of synthesis using this technology. Through the utilization of an electron-rich substrate (p-methoxytoluene), a continuous-flow electrochemical oxidation process was optimized. Using a general continuous-flow protocol, a series of diverse tolyl-based substrates were evaluated and the resulting data are reported. The Flux Module results were correlated with the oxidation potential of each substrate as measured by cyclic voltammetry. This established a trend regarding the nature of available oxidation product profiles using this synthesis platform.

Restricted access
Journal of Flow Chemistry
Authors: Jill E. Hochlowski, Philip A. Searle, Noah P. Tu, Jeffrey Y. Pan, Stephen G. Spanton and Stevan W. Djuric

Abstract

We report herein a high-throughput integrated ynthesis–purification platform termed SWIFT (synthesis with integrated-flow technology) and processes that accelerate the rate at which validated small-molecule organic compounds are generated. A segmented-flow synthesizer was integrated to a preparative HPLC-MS, where each reaction product was purified immediately upon reaction completion. Further, automated structure-validation processes accelerate the rate at which drug discovery candidates are available for biological screening.

Restricted access