Search Results

You are looking at 1 - 2 of 2 items for

  • Author or Editor: Sung-Bin Park x
  • Refine by Access: All Content x
Clear All Modify Search

Abstract  

Recovered salt can be reused in the electrorefining process and the final removed salt from uranium (U) deposits can be fed into a following U casting process to prepare ingot. Therefore, salt distillation process is very important to increase the throughput of the salt separation system due to the high U content of spent nuclear fuel and high salt fraction of U dendrites. Yields on salt recovered by a batch type vacuum distiller transfer device were processed for obtaining pure eutectic salt and U. In this study, the influence of the various temperature slopes of each zones on salt evaporation and recovery rate are discussed. From the experimental results, the optimal temperature of each zones appear at the Top Zone and Zone 1 is 850 °C, Zone 2 is 650 °C and Zone 3 is 600 °C, respectively. In these conditions, the complete evaporation of pure salt in 1.4 h occurred and the amount of recovered salt was about 99 wt%. The adhered salt in U deposits was separated by a temperature slope zone of salt distillation equipment. From the experimental results using U deposits, the amount of salt evaporation was achieved more than 99 wt% and the salt evaporation rate was about 1.16 g/min. Also, the mount of recovered salt was about 99.5 wt%.

Restricted access

Summary  

Electrochemical behavior of the reduction of uranium oxide was studied in a LiCl-Li2O molten salt system with an integrated cathode assembly. The mechanism for the electrolytic reduction of uranium oxide was studied through cyclic voltammetry. By means of a chronopotentiometry, the effects of the thickness of the uranium oxide, the thickness of the MgO membrane and the material of the conductor of an integrated cathode assembly on the overpotential of the cathode were investigated. From the voltamograms, the reduction potential of the uranium oxide and Li2O was obtained and the two mechanisms of the electrolytic reduction were considered with regard to the applied cathode potential. From the chronopotentiograms, the exchange current, the transfer coefficient and the maximum allowable current based on the Tafel behavior were obtained with regard to the thickness of the uranium oxide, and of the MgO membrane and the material of the conductor of an integrated cathode assembly.

Restricted access