Search Results

You are looking at 1 - 2 of 2 items for

  • Author or Editor: Susmita Chandra x
  • Refine by Access: All Content x
Clear All Modify Search

Abstract  

In the recent years interests on dihydropyrimidinone and their analogues have increased potentially due to their wide range of pharmacological/biological activities. Synthesis, radiolabeling with technetium-99 m (99mTc) and biological evaluation of 5-etoxycarbonyl-4-phenyl-6-methyl-3,4-dihydro-(1H)-pyrimidine-2-one (DHPM) were studied in this present work. After synthesis complexation of DHPM with 99mTc was carried out using stannous chloride as the reducing agent. The complex (99mTc-DHPM) was characterized by thin layer chromatography, radio-HPLC technique and determination of partition co-efficient. Radiochemical stability and particle size distribution of the complex were also measured. Biodistribution/scintigraphy studies were performed in rats and rabbits to evaluate the pharmacological characteristics of this complex. The radiochemical purity of the complex was over 95% as studied by thin layer chromatography and radio-HPLC. It was stable over 24 h at room temperature. Its partition coefficient indicated that it was a lipophilic complex. According to the European Pharmacopeia, >80% of 99mTc labeled radiopharmaceutical (99mTc-MAA) in the size range 10–50 μm, must be accumulated in the lungs 15 min after intravenous administration. In this study >85% of the 99mTc-DHPM complex in the average size of 40 μm. Biodistribution studies of 99mTc-DHPM in rat revealed that the complex accumulated in the lung with high uptake and good retention after intravenous administration. Scintigraphic studies in rabbit also revealed that most of the administered radiolabeled complex was accumulated in the lungs and after 1 h slowly excreted through the renal system. The lung uptake (ID%/g) was 10.12, 9.67, 8.60 and 5.01 and the lung/liver ratio was 7.49, 2.88, 2.62 and 1.87 at 2, 15, 30 and 60 min post-injection, respectively. These results suggested that 99mTc-DHPM could be suitable as a potential lung perfusion imaging agent. Further studies with 99mTc-DHPM and its derivatives are warranted to develop new 99mTc-labeled imaging agents for clinical applications.

Restricted access

Abstract  

In vivo imaging of tumours using radiolabelled somatostatin (SST) analogues has become an accepted clinical tool in oncology. HYNIC-Tyr3 octreotide and Tyr3 octreotide were synthesized by FMOC solid-phase peptide synthesis using a semi-automated synthesizer. These were analyzed and purified by RP-HPLC, mass spectroscopy, IR spectroscopy, 1H NMR and 13C NMR. The prochelator 6-BOC-HYNIC was also synthesised and characterised indigenously. HYNIC-Tyr3 octreotide was labelled with 99mTc using Tricine and EDDA as coligand by SnCl2 method. Labelling with 99mTc was performed at 100 °C for 15 min and radiochemical analysis by ITLC and HPLC methods. The radiochemical purity of the complex was over 98% and log p value was found to be −1.27 ± 0.12. The stability of radiolabelled peptide complex was checked at 37 °C up to 24 h. Blood clearance and protein-binding study was also performed. In vivo biodistribution studies in rat showed uptake of 99mTc-HYNIC-TOC in kidney than any other organs. The blood clearance was faster with rapid excretion through kidneys and relatively low uptake in liver.

Restricted access