Search Results

You are looking at 1 - 3 of 3 items for

  • Author or Editor: Szabolcs Fischer x
  • Refine by Access: All Content x
Clear All Modify Search

There are no design parameters related to speeds exceeding 160 km/h in the effective Hungarian railway design rules. In the relevant international standard (ENV 13803) a similar speed limit is 300 km/h. This paper deals with the comparative of these regulations. Parameters of two transition curves used in Hungary and other used in Austria are determined. The importance of the new design parameters provided by ENV 13803 is assessed. It is demonstrated that the usability of the clothoide transition curves is unnecessarily restricted for the speeds v ≤120 km/h in the Hungarian regulations.

Restricted access

In this paper the authors partially summarize the results of a research on glued insulated rail joints with fiber-glass reinforced plastic fishplates (brand: Apatech) related to own executed laboratory tests. The goal of the research is to investigate the application of this new type of glued insulated rail joint where the fishplates are manufactured at high pressure, regulated temperature, glass-fiber reinforced polymer composite plastic material. The usage of this kind of glued insulated rail joints is able to eliminate the electric fishplate circuit and early fatigue deflection and it can ensure the isolation of rails’ ends from each other by aspect of electric conductivity.

Restricted access


This paper summarizes the authors' up-to-date results in the research topic of railway ballast particles' breakage test with individual laboratory test. In the past few years there were a lot of railway rehabilitation and maintenance project in Hungary, as well as abroad. The largest part of world's railways has traditional superstructure, i.e. they are so called ballasted tracks. The railway ballast is the highest mass in the railways' superstructure. Nowadays, it is a naturally fact that there is enough quantity of railway ballast in adequate quality. However, due to the modifications and restrictions in the related regulations since 2010, there are only few quarries in Hungary, which are able to ensure adequate railway ballast material for railway construction and maintenance projects for speed values between 120 and 160 km/h. Quarrying industry is stricken by aggravated environmental, heritage and conservation regulations year by year, it limits the accessibility of mineral wealth in significant manner. This fact with quality requirements means supply and quality risk in production of railway ballast in medium term. The main goal of authors' research is to be able to simulate the stress-strain effect of ballast particles in real and objective manner in laboratory circumstances, as well as in discrete element method modeling. This paper introduces the exact assembly of executed laboratory test and newest test results. The authors summarize the up-to-date international literature review, using that they give short outlook to the planned research with research directions in near future.

Open access